An instrumental variable approach for rigid industrial robots identification

Abstract This paper deals with the important topic of rigid industrial robots identification. The usual identification method is based on the use of the inverse dynamic model and the least-squares technique. In order to obtain good results, a well-tuned derivative bandpass filtering of joint positions is needed to calculate the joint velocities and accelerations. However, we can doubt whether the bandpass filter is well-tuned or not. Another approach is the instrumental variable (IV) method which is robust to data filtering and which is statistically optimal. In this paper, an IV approach relevant for identification of rigid industrial robots is introduced. The set of instruments is the inverse dynamic model built from simulated data which are calculated from the simulation of the direct dynamic model. The simulation assumes the same reference trajectories and the same control structure for both the actual and the simulated robot and is based on the previous IV estimates. Furthermore, to obtain a rapid convergence, the gains of the simulated controller are updated according to IV estimates. Thus, the proposed approach validates the inverse and direct dynamic models simultaneously and is not sensitive to initial conditions. The experimental results obtained with a 2 degrees of freedom (DOF) planar prototype and with a 6 DOF industrial robot show the effectiveness of our approach: it is possible to identify 60 parameters in 3 iterations and in 11 s.

[1]  J. De Schutter,et al.  Dynamic Model Identification for Industrial Robots , 2007, IEEE Control Systems.

[2]  Maxime Gautier,et al.  Comparison of two identification techniques: Theory and application , 2007, ICINCO-RA.

[3]  Maxime Gautier,et al.  Identification of inertial and drive gain parameters of robots , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[4]  J. MacKinnon,et al.  Estimation and inference in econometrics , 1994 .

[5]  Olav Reiersol,et al.  Confluence Analysis by Means of Lag Moments and Other Methods of Confluence Analysis , 1941 .

[6]  Henrik Gordon Petersen,et al.  A new method for estimating parameters of a dynamic robot model , 2001, IEEE Trans. Robotics Autom..

[7]  P. Young,et al.  Optimal instrumental variable method for closed-loop identification , 2011 .

[8]  Jan Swevers,et al.  Maximum Likelihood Identification of a Dynamic Robot Model: Implementation Issues , 2002, Int. J. Robotics Res..

[9]  Jan Swevers,et al.  Dynamic model identification for industrial robots - Integrated experiment design and parameter estimation , 2007 .

[10]  P. Poignet,et al.  Extended Kalman filtering and weighted least squares dynamic identification of robot , 2000 .

[11]  Maxime Gautier,et al.  Identification of robots dynamics with the Instrumental Variable method , 2009, 2009 IEEE International Conference on Robotics and Automation.

[12]  Maxime Gautier,et al.  Identification of Physical Parameters and Instrumental Variables Validation With Two-Stage Least Squares Estimator , 2013, IEEE Transactions on Control Systems Technology.

[13]  P. Young,et al.  An optimal IV technique for identifying continuous-time transfer function model of multiple input systems , 2007 .

[14]  Maxime Gautier,et al.  Dynamic identification of a 6 dof robot without joint position data , 2011, 2011 IEEE International Conference on Robotics and Automation.

[15]  H. Unbehauen,et al.  Identification of continuous-time systems , 1991 .

[16]  H. White A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity , 1980 .

[17]  Tao Liu,et al.  Identification and Autotuning of Temperature-Control System With Application to Injection Molding , 2009, IEEE Transactions on Control Systems Technology.

[18]  Wisama Khalil,et al.  Direct calculation of minimum set of inertial parameters of serial robots , 1990, IEEE Trans. Robotics Autom..

[19]  Uzay Kaymak,et al.  Modeling and Identification , 2002 .

[20]  Koichi Osuka,et al.  Base parameters of manipulator dynamic models , 1990, IEEE Trans. Robotics Autom..

[21]  M. Gautier,et al.  Exciting Trajectories for the Identification of Base Inertial Parameters of Robots , 1992 .

[22]  Giuseppe Carlo Calafiore,et al.  Robot Dynamic Calibration: Optimal Excitation Trajectories and Experimental Parameter Estimation , 2001 .

[23]  J. Hausman Specification tests in econometrics , 1978 .

[24]  Fengfeng Xi Effect of non-geometric errors on manipulator inertial calibration , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[25]  Petre Stoica,et al.  Decentralized Control , 2018, The Control Systems Handbook.

[26]  P. Poignet,et al.  Robust dynamic experimental identification of robots with set membership uncertainty , 2005, IEEE/ASME Transactions on Mechatronics.

[27]  Wisama Khalil,et al.  SYMORO+: A system for the symbolic modelling of robots , 1997, Robotica.

[28]  Koji Yoshida,et al.  Experimental Study Of The Identification Methods For An Industrial Robot Manipulator , 1992, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems.

[29]  Sébastien Briot,et al.  Global identification of drive gains parameters of robots using a known payload , 2012, 2012 IEEE International Conference on Robotics and Automation.

[30]  Maxime Gautier Dynamic identification of robots with power model , 1997, Proceedings of International Conference on Robotics and Automation.

[31]  Maxime Gautier,et al.  Identification of 6 DOF Rigid Industrial Robots with the Instrumental Variable Method , 2012 .

[32]  G. Calafiore,et al.  Robust calibration and control of robotic manipulators , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[33]  Wisama Khalil,et al.  Modeling, Identification and Control of Robots , 2003 .

[34]  Maarten Steinbuch,et al.  Modeling and identification for high-performance robot control: an RRR-robotic arm case study , 2004, IEEE Transactions on Control Systems Technology.

[35]  Peter C. Young,et al.  Recursive Estimation and Time-Series Analysis: An Introduction , 1984 .

[36]  Naresh K. Sinha,et al.  Identification of Continuous-Time Systems Using Instrumental Variables with Application to an Industrial Robot , 1986, IEEE Transactions on Industrial Electronics.

[37]  Jan Swevers,et al.  Optimal robot excitation and identification , 1997, IEEE Trans. Robotics Autom..

[38]  Liuping Wang,et al.  Identification of Continuous-time Models from Sampled Data , 2008 .

[39]  Maxime Gautier,et al.  A New Closed-Loop Output Error Method for Parameter Identification of Robot Dynamics , 2010, IEEE Transactions on Control Systems Technology.