Insulated Neighborhoods: Structural and Functional Units of Mammalian Gene Control

[1]  Theodor Boveri,et al.  Die Blastomerenkerne von Ascaris Megalocephala und die Theorie der Chromosomenindividualität , 1909 .

[2]  J. Banerji,et al.  Expression of a beta-globin gene is enhanced by remote SV40 DNA sequences. , 1981, Cell.

[3]  Pierre Chambon,et al.  In vivo sequence requirements of the SV40 early promoter region , 1981, Nature.

[4]  J. Banerji,et al.  Expression of a β-globin gene is enhanced by remote SV40 DNA sequences , 1981, Cell.

[5]  P. Gruss,et al.  Simian virus 40 tandem repeated sequences as an element of the early promoter. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[6]  A. Udvardy,et al.  The 87A7 chromomere. Identification of novel chromatin structures flanking the heat shock locus that may define the boundaries of higher order domains. , 1985, Journal of molecular biology.

[7]  J. D. Engel,et al.  Developmental regulation of beta-globin gene switching. , 1988, Cell.

[8]  J. D. Engel,et al.  Developmental regulation of β-globin gene switching , 1988, Cell.

[9]  Paul Schedl,et al.  A position-effect assay for boundaries of higher order chromosomal domains , 1991, Cell.

[10]  V. Corces,et al.  DNA position-specific repression of transcription by a Drosophila zinc finger protein. , 1992, Genes & development.

[11]  G. Felsenfeld,et al.  A 5′ element of the chicken β-globin domain serves as an insulator in human erythroid cells and protects against position effect in Drosophila , 1993, Cell.

[12]  Tom Maniatis,et al.  Transcriptional activation: A complex puzzle with few easy pieces , 1994, Cell.

[13]  M. Levine,et al.  Different core promoters possess distinct regulatory activities in the Drosophila embryo. , 1998, Genes & development.

[14]  A. West,et al.  The Protein CTCF Is Required for the Enhancer Blocking Activity of Vertebrate Insulators , 1999, Cell.

[15]  Shirley M. Tilghman,et al.  CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus , 2000, Nature.

[16]  G. Pfeifer,et al.  Maternal-specific footprints at putative CTCF sites in the H19 imprinting control region give evidence for insulator function , 2000, Current Biology.

[17]  Victor V Lobanenkov,et al.  Functional association of CTCF with the insulator upstream of the H19 gene is parent of origin-specific and methylation-sensitive , 2000, Current Biology.

[18]  G. Felsenfeld,et al.  Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene , 2000, Nature.

[19]  J. T. Kadonaga,et al.  Enhancer-promoter specificity mediated by DPE or TATA core promoter motifs. , 2001, Genes & development.

[20]  Erik Splinter,et al.  Looping and interaction between hypersensitive sites in the active beta-globin locus. , 2002, Molecular cell.

[21]  R. Kingston,et al.  Chromatin Compaction by a Polycomb Group Protein Complex , 2004, Science.

[22]  Wolf Reik,et al.  Interaction between differentially methylated regions partitions the imprinted genes Igf2 and H19 into parent-specific chromatin loops , 2004, Nature Genetics.

[23]  Rolf Ohlsson,et al.  CTCF binding at the H19 imprinting control region mediates maternally inherited higher-order chromatin conformation to restrict enhancer access to Igf2. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[24]  N. Galjart,et al.  CTCF mediates long-range chromatin looping and local histone modification in the beta-globin locus. , 2007, Genes & development.

[25]  M. Groudine,et al.  Flanking HS-62.5 and 3' HS1, and regions upstream of the LCR, are not required for beta-globin transcription. , 2006, Blood.

[26]  Wouter de Laat,et al.  CTCF mediates long-range chromatin looping and local histone modification in the beta-globin locus. , 2006, Genes & development.

[27]  Leighton J. Core,et al.  Nascent RNA Sequencing Reveals Widespread Pausing and Divergent Initiation at Human Promoters , 2008, Science.

[28]  Chunhui Hou,et al.  CTCF-dependent enhancer-blocking by alternative chromatin loop formation , 2008, Proceedings of the National Academy of Sciences.

[29]  Gene W. Yeo,et al.  Divergent Transcription from Active Promoters , 2008, Science.

[30]  G. Bosco,et al.  Chromosome Alignment and Transvection Are Antagonized by Condensin II , 2008, Science.

[31]  E. Liu,et al.  An Oestrogen Receptor α-bound Human Chromatin Interactome , 2009, Nature.

[32]  V. Corces,et al.  CTCF: Master Weaver of the Genome , 2009, Cell.

[33]  David A. Orlando,et al.  Mediator and Cohesin Connect Gene Expression and Chromatin Architecture , 2010, Nature.

[34]  Timothy J. Durham,et al.  "Systematic" , 1966, Comput. J..

[35]  Chee Seng Chan,et al.  CTCF-Mediated Functional Chromatin Interactome in Pluripotent Cells , 2011, Nature Genetics.

[36]  Timothy J. Durham,et al.  Systematic analysis of chromatin state dynamics in nine human cell types , 2011, Nature.

[37]  V. Corces,et al.  Enhancer function: new insights into the regulation of tissue-specific gene expression , 2011, Nature Reviews Genetics.

[38]  M. Groudine,et al.  Functional and Mechanistic Diversity of Distal Transcription Enhancers , 2011, Cell.

[39]  R. Weksberg,et al.  Disruption of genomic neighbourhood at the imprinted IGF2-H19 locus in Beckwith–Wiedemann syndrome and Silver–Russell syndrome , 2011, Human molecular genetics.

[40]  K. Zhao,et al.  Characterization of genome-wide enhancer-promoter interactions reveals co-expression of interacting genes and modes of higher order chromatin organization , 2012, Cell Research.

[41]  Data production leads,et al.  An integrated encyclopedia of DNA elements in the human genome , 2012 .

[42]  J. Sedat,et al.  Spatial partitioning of the regulatory landscape of the X-inactivation centre , 2012, Nature.

[43]  E. Furlong,et al.  Transcription factors: from enhancer binding to developmental control , 2012, Nature Reviews Genetics.

[44]  Shane J. Neph,et al.  Systematic Localization of Common Disease-Associated Variation in Regulatory DNA , 2012, Science.

[45]  ENCODEConsortium,et al.  An Integrated Encyclopedia of DNA Elements in the Human Genome , 2012, Nature.

[46]  Matthew T. Maurano,et al.  Widespread plasticity in CTCF occupancy linked to DNA methylation , 2012, Genome research.

[47]  Jesse R. Dixon,et al.  Topological Domains in Mammalian Genomes Identified by Analysis of Chromatin Interactions , 2012, Nature.

[48]  J. Wysocka,et al.  Enhancers as information integration hubs in development: lessons from genomics. , 2012, Trends in genetics : TIG.

[49]  Laura E. DeMare,et al.  The genomic landscape of cohesin-associated chromatin interactions , 2013, Genome research.

[50]  Bas van Steensel,et al.  Genome Architecture: Domain Organization of Interphase Chromosomes , 2013, Cell.

[51]  David A. Orlando,et al.  Supplemental Information Multiple Structural Maintenance of Chromosome Complexes at Transcriptional Regulatory Elements , 2013 .

[52]  Jennifer E. Phillips-Cremins,et al.  Architectural Protein Subclasses Shape 3D Organization of Genomes during Lineage Commitment , 2013, Cell.

[53]  Albert E. Almada,et al.  Divergent transcription of long noncoding RNA/mRNA gene pairs in embryonic stem cells , 2013, Proceedings of the National Academy of Sciences.

[54]  R. Young,et al.  Super-Enhancers in the Control of Cell Identity and Disease , 2013, Cell.

[55]  D. Duboule,et al.  Topology of mammalian developmental enhancers and their regulatory landscapes , 2013, Nature.

[56]  Tom Misteli,et al.  Functional implications of genome topology , 2013, Nature Structural &Molecular Biology.

[57]  Jon C. Aster,et al.  NOTCH1–RBPJ complexes drive target gene expression through dynamic interactions with superenhancers , 2013, Proceedings of the National Academy of Sciences.

[58]  J. Dekker,et al.  The hierarchy of the 3D genome. , 2013, Molecular cell.

[59]  V. Corces,et al.  Poly(ADP-ribosyl)ation Regulates Insulator Function and Intrachromosomal Interactions in Drosophila , 2013, Cell.

[60]  Jennifer E. Phillips-Cremins,et al.  Chromatin insulators: linking genome organization to cellular function. , 2013, Molecular cell.

[61]  B. Ren,et al.  The 3D genome in transcriptional regulation and pluripotency. , 2014, Cell stem cell.

[62]  V. Corces,et al.  CTCF: an architectural protein bridging genome topology and function , 2014, Nature Reviews Genetics.

[63]  Robert Tjian,et al.  Looping Back to Leap Forward: Transcription Enters a New Era , 2014, Cell.

[64]  J. Dekker,et al.  Predictive Polymer Modeling Reveals Coupled Fluctuations in Chromosome Conformation and Transcription , 2014, Cell.

[65]  Jill M Dowen,et al.  Control of Cell Identity Genes Occurs in Insulated Neighborhoods in Mammalian Chromosomes , 2014, Cell.

[66]  S. Gabriel,et al.  Discovery and saturation analysis of cancer genes across 21 tumor types , 2014, Nature.

[67]  Kyle J. Gaulton,et al.  Identification of a Regulatory Variant That Binds FOXA1 and FOXA2 at the CDC123/CAMK1D Type 2 Diabetes GWAS Locus , 2014, PLoS genetics.

[68]  Leonid A. Mirny,et al.  Chromatin loops as modulators of enhancer-promoter interactions in their vicinity , 2014 .

[69]  D. Reinberg,et al.  CTCF regulates the human p53 gene through direct interaction with its natural antisense transcript, Wrap53 , 2014, Genes & development.

[70]  Britta A. M. Bouwman,et al.  A Single Oncogenic Enhancer Rearrangement Causes Concomitant EVI1 and GATA2 Deregulation in Leukemia , 2014, Cell.

[71]  Neva C. Durand,et al.  A 3D Map of the Human Genome at Kilobase Resolution Reveals Principles of Chromatin Looping , 2014, Cell.

[72]  Michael Q. Zhang,et al.  Genome-wide map of regulatory interactions in the human genome , 2014, Genome research.

[73]  Judith B. Zaugg,et al.  Genetic Control of Chromatin States in Humans Involves Local and Distal Chromosomal Interactions , 2015, Cell.

[74]  Pedro P. Rocha,et al.  CTCF establishes discrete functional chromatin domains at the Hox clusters during differentiation , 2015, Science.

[75]  Peter H. L. Krijger,et al.  CTCF Binding Polarity Determines Chromatin Looping. , 2015, Molecular cell.

[76]  A. Visel,et al.  Disruptions of Topological Chromatin Domains Cause Pathogenic Rewiring of Gene-Enhancer Interactions , 2015, Cell.

[77]  Tom R. Gaunt,et al.  The UK10K project identifies rare variants in health and disease , 2016 .

[78]  Feng Yue,et al.  Transcriptional Enhancers: Bridging the Genome and Phenome. , 2015, Cold Spring Harbor symposia on quantitative biology.

[79]  J. Dekker,et al.  Structural and functional diversity of Topologically Associating Domains , 2015, FEBS letters.

[80]  Jing Liang,et al.  Chromatin architecture reorganization during stem cell differentiation , 2015, Nature.

[81]  D. Odom,et al.  Comparative HiC Reveals that CTCF Underlies Evolution of Chromosomal Domain Architecture Graphical , 2015 .

[82]  Michel C. Nussenzweig,et al.  Orientation-Specific Joining of AID-initiated DNA Breaks Promotes Antibody Class Switching , 2015, Nature.

[83]  Niko Välimäki,et al.  CTCF/cohesin-binding sites are frequently mutated in cancer , 2015, Nature Genetics.

[84]  Paola Bovolenta,et al.  Evolutionary comparison reveals that diverging CTCF sites are signatures of ancestral topological associating domains borders , 2015, Proceedings of the National Academy of Sciences.

[85]  C. Glass,et al.  The selection and function of cell type-specific enhancers , 2015, Nature Reviews Molecular Cell Biology.

[86]  Richard L. Frock,et al.  Chromosomal Loop Domains Direct the Recombination of Antigen Receptor Genes , 2015, Cell.

[87]  Dariusz M Plewczynski,et al.  CTCF-Mediated Human 3D Genome Architecture Reveals Chromatin Topology for Transcription , 2015, Cell.

[88]  Martina Rath,et al.  Enhancer–core-promoter specificity separates developmental and housekeeping gene regulation , 2014, Nature.

[89]  Jun S. Liu,et al.  The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in humans , 2015, Science.

[90]  Neva C. Durand,et al.  Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes , 2015, Proceedings of the National Academy of Sciences.

[91]  Michael Q. Zhang,et al.  CRISPR Inversion of CTCF Sites Alters Genome Topology and Enhancer/Promoter Function , 2015, Cell.

[92]  M. Daly,et al.  Genetic and Epigenetic Fine-Mapping of Causal Autoimmune Disease Variants , 2014, Nature.

[93]  J. Stamatoyannopoulos,et al.  Genomic discovery of potent chromatin insulators for human gene therapy , 2015, Nature Biotechnology.

[94]  Michael Q. Zhang,et al.  Integrative analysis of 111 reference human epigenomes , 2015, Nature.

[95]  L. Mirny,et al.  Formation of Chromosomal Domains in Interphase by Loop Extrusion , 2015, bioRxiv.

[96]  Davide Cittaro,et al.  Inheritable Silencing of Endogenous Genes by Hit-and-Run Targeted Epigenetic Editing , 2016, Cell.

[97]  Michael Levine,et al.  Enhancer Control of Transcriptional Bursting , 2016, Cell.

[98]  D. Postma,et al.  Genetics and Genomics of Longitudinal Lung Function Patterns in Individuals with Asthma. , 2016, American journal of respiratory and critical care medicine.

[99]  Shawn M. Gillespie,et al.  Insulator dysfunction and oncogene activation in IDH mutant gliomas , 2015, Nature.

[100]  Job Dekker,et al.  Invariant TAD Boundaries Constrain Cell-Type-Specific Looping Interactions between Promoters and Distal Elements around the CFTR Locus. , 2016, American journal of human genetics.

[101]  Sigal Shachar,et al.  3D Chromosome Regulatory Landscape of Human Pluripotent Cells. , 2016, Cell stem cell.

[102]  Olivier Elemento,et al.  Multi-tiered Reorganization of the Genome during B Cell Affinity Maturation Anchored by a Germinal Center-Specific Locus Control Region. , 2016, Immunity.

[103]  L. Mirny,et al.  The 3D Genome as Moderator of Chromosomal Communication , 2016, Cell.

[104]  Yonatan Stelzer,et al.  Editing DNA Methylation in the Mammalian Genome , 2016, Cell.

[105]  Anthony D. Schmitt,et al.  Genome-wide mapping and analysis of chromosome architecture , 2016, Nature Reviews Molecular Cell Biology.

[106]  Daniel S. Day,et al.  Activation of proto-oncogenes by disruption of chromosome neighborhoods , 2015, Science.

[107]  E. Nora,et al.  CTCF and Cohesin in Genome Folding and Transcriptional Gene Regulation. , 2016, Annual review of genomics and human genetics.

[108]  FTO Obesity Variant and Adipocyte Browning in Humans. , 2016, The New England journal of medicine.