An efficient algorithm for automatic generation of manipulator dynamic equations

An algorithm generating the dynamic equations of the manipulator in a symbolic form is presented. The proposed algorithm is based on a modified Lagrange-Christoffel formulation of robot dynamics. A PC-based program, ARDEG, implements the algorithm and automatically generates the equations of motion for open-chain manipulators in a symbolic form. Various types of manipulators are investigated to evaluate the efficiency of the program. In a 3-DOF PUMA robot, the ARDEG-generated algorithm reduces the computational load of a general Newton-Euler recursive algorithm by 80% and that of a recursive algorithm generated by the computer program ARM by more than 22%.<<ETX>>

[1]  Thomas R. Kane,et al.  The Use of Kane's Dynamical Equations in Robotics , 1983 .

[2]  Chao-Kuang Chen,et al.  Symbolic derivation of dynamic equations of motion for robot manipulators using Piogram symbolic method , 1988, IEEE J. Robotics Autom..

[3]  Richard P. Paul,et al.  Automatic generation of the dynamic equations of the robot manipulators using a LISP program , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[4]  J. Murray,et al.  ARM: An algebraic robot dynamic modeling program , 1984, ICRA.

[5]  G. Cesareo,et al.  DYMIR: A code for generating dynamic model of robots , 1984, ICRA.

[6]  John J. Murray,et al.  Computational robot dynamics: Foundations and applications , 1985, J. Field Robotics.

[7]  John J. Murray,et al.  Symbolically efficient formulations for computational robot dynamics , 1987, J. Field Robotics.

[8]  C. S. George Lee,et al.  Robot Arm Kinematics, Dynamics, and Control , 1982, Computer.

[9]  C. S. George Lee,et al.  Development of Generalized d'Alembert Equations of Motion for Robot Manipulators , 1987, IEEE Transactions on Systems, Man, and Cybernetics.

[10]  Chang Jin Li,et al.  A new method of dynamics for robot manipulators , 1988, IEEE Trans. Syst. Man Cybern..

[11]  John J. Murray,et al.  Customized computational robot dynamics , 1987, J. Field Robotics.

[12]  Joel W. Burdick An algorithm for generation of efficient manipulator dynamic equations , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[13]  John M. Hollerbach,et al.  A Recursive Lagrangian Formulation of Maniputator Dynamics and a Comparative Study of Dynamics Formulation Complexity , 1980, IEEE Transactions on Systems, Man, and Cybernetics.

[14]  J. Y. S. Luh,et al.  On-Line Computational Scheme for Mechanical Manipulators , 1980 .