Predicting Network Activity from High Throughput Metabolomics

The functional interpretation of high throughput metabolomics by mass spectrometry is hindered by the identification of metabolites, a tedious and challenging task. We present a set of computational algorithms which, by leveraging the collective power of metabolic pathways and networks, predict functional activity directly from spectral feature tables without a priori identification of metabolites. The algorithms were experimentally validated on the activation of innate immune cells.

[1]  Shiyong Wu,et al.  Nitric oxide: a regulator of eukaryotic initiation factor 2 kinases. , 2011, Free Radical Biology & Medicine.

[2]  Monica L. Mo,et al.  Global reconstruction of the human metabolic network based on genomic and bibliomic data , 2007, Proceedings of the National Academy of Sciences.

[3]  O. Demin,et al.  The Edinburgh human metabolic network reconstruction and its functional analysis , 2007, Molecular systems biology.

[4]  Bali Pulendran,et al.  Yellow fever vaccine YF-17D activates multiple dendritic cell subsets via TLR2, 7, 8, and 9 to stimulate polyvalent immunity , 2006, The Journal of experimental medicine.

[5]  Kellen L. Olszewski,et al.  Reconstruction and flux-balance analysis of the Plasmodium falciparum metabolic network , 2010, Molecular systems biology.

[6]  V. Bronte,et al.  Regulation of immune responses by L-arginine metabolism , 2005, Nature Reviews Immunology.

[7]  Zachary D. Smith,et al.  Unbiased Reconstruction of a Mammalian Transcriptional Network Mediating Pathogen Responses , 2009 .

[8]  Sarah L. Grady,et al.  Divergent Effects of Human Cytomegalovirus and Herpes Simplex Virus-1 on Cellular Metabolism , 2011, PLoS pathogens.

[9]  Aarash Bordbar,et al.  A multi-tissue type genome-scale metabolic network for analysis of whole-body systems physiology , 2011, BMC Systems Biology.

[10]  Christoph Steinbeck,et al.  MetaboLights—an open-access general-purpose repository for metabolomics studies and associated meta-data , 2012, Nucleic Acids Res..

[11]  L. Wilkinson Immunity , 1891, The Lancet.

[12]  A. Barabasi,et al.  Hierarchical Organization of Modularity in Metabolic Networks , 2002, Science.

[13]  Kiyoko F. Aoki-Kinoshita,et al.  From genomics to chemical genomics: new developments in KEGG , 2005, Nucleic Acids Res..

[14]  Rick L. Stevens,et al.  High-throughput generation, optimization and analysis of genome-scale metabolic models , 2010, Nature Biotechnology.

[15]  M E J Newman,et al.  Modularity and community structure in networks. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[16]  Joshua D Rabinowitz,et al.  Metabolomic analysis and visualization engine for LC-MS data. , 2010, Analytical chemistry.

[17]  Douglas A. Hosack,et al.  Identifying biological themes within lists of genes with EASE , 2003, Genome Biology.

[18]  Oliver Fiehn,et al.  Metabolomic database annotations via query of elemental compositions: Mass accuracy is insufficient even at less than 1 ppm , 2006, BMC Bioinformatics.

[19]  Michael P. Barrett,et al.  MetExplore: a web server to link metabolomic experiments and genome-scale metabolic networks , 2010, Nucleic Acids Res..

[20]  E. Ruppin,et al.  Computational reconstruction of tissue-specific metabolic models: application to human liver metabolism , 2010, Molecular systems biology.

[21]  Bali Pulendran,et al.  Learning immunology from the yellow fever vaccine: innate immunity to systems vaccinology , 2009, Nature Reviews Immunology.

[22]  Dean P. Jones,et al.  High-performance metabolic profiling of plasma from seven mammalian species for simultaneous environmental chemical surveillance and bioeffect monitoring. , 2012, Toxicology.

[23]  Natapol Pornputtapong,et al.  Reconstruction of Genome-Scale Active Metabolic Networks for 69 Human Cell Types and 16 Cancer Types Using INIT , 2012, PLoS Comput. Biol..

[24]  Jason A. Papin,et al.  Applications of genome-scale metabolic reconstructions , 2009, Molecular systems biology.

[25]  Shuzhao Li,et al.  Systems vaccinology: learning to compute the behavior of vaccine induced immunity , 2012, Wiley interdisciplinary reviews. Systems biology and medicine.

[26]  Joel S. Bader,et al.  NeMo: Network Module identification in Cytoscape , 2010, BMC Bioinformatics.

[27]  E. Pamer,et al.  TNF/iNOS-producing dendritic cells mediate innate immune defense against bacterial infection. , 2003, Immunity.

[28]  An-Ping Zeng,et al.  Decomposition of metabolic network into functional modules based on the global connectivity structure of reaction graph , 2004, Bioinform..

[29]  Steffen Neumann,et al.  Computational annotation of plant metabolomics profiles via a novel network-assisted approach , 2013, Metabolomics.

[30]  Tianwei Yu,et al.  apLCMS - adaptive processing of high-resolution LC/MS data , 2009, Bioinform..

[31]  Peter D. Karp,et al.  The MetaCyc Database of metabolic pathways and enzymes and the BioCyc collection of Pathway/Genome Databases , 2007, Nucleic Acids Res..

[32]  Alberto Mantovani,et al.  Orchestration of metabolism by macrophages. , 2012, Cell metabolism.

[33]  Bernhard O. Palsson,et al.  A detailed genome-wide reconstruction of mouse metabolism based on human Recon 1 , 2010, BMC Systems Biology.

[34]  B. Palsson,et al.  A protocol for generating a high-quality genome-scale metabolic reconstruction , 2010 .

[35]  Eva K. Lee,et al.  Systems biology approach predicts immunogenicity of the yellow fever vaccine in humans , 2009, Nature Immunology.

[36]  G. Siuzdak,et al.  Innovation: Metabolomics: the apogee of the omics trilogy , 2012, Nature Reviews Molecular Cell Biology.

[37]  Chris Sander,et al.  Characterizing gene sets with FuncAssociate , 2003, Bioinform..

[38]  Advin K. Mathew METABOLOMICS: THE APOGEE OF THE OMICS TRILOGY , 2013 .

[39]  Luke Hunter,et al.  Interpreting Metabolomic Profiles using Unbiased Pathway Models , 2010, PLoS Comput. Biol..

[40]  Shuzhao Li,et al.  Constructing a fish metabolic network model , 2010, Genome Biology.

[41]  D. Kell,et al.  Mass Spectrometry Tools and Metabolite-specific Databases for Molecular Identification in Metabolomics , 2009 .

[42]  W. Paul,et al.  Bridging Innate and Adaptive Immunity , 2011, Cell.

[43]  R. Weinshilboum,et al.  Metabolomics: a global biochemical approach to drug response and disease. , 2008, Annual review of pharmacology and toxicology.

[44]  Shuzhao Li,et al.  Detailed Mitochondrial Phenotyping by High Resolution Metabolomics , 2012, PloS one.

[45]  John L Markley,et al.  Metabolite identification via the Madison Metabolomics Consortium Database , 2008, Nature Biotechnology.

[46]  Jing Gao,et al.  Metscape: a Cytoscape plug-in for visualizing and interpreting metabolomic data in the context of human metabolic networks , 2010, Bioinform..

[47]  S. Morris,et al.  Arginine: Master and Commander in Innate Immune Responses , 2010, Science Signaling.

[48]  Christophe Junot,et al.  Annotation of the human adult urinary metabolome and metabolite identification using ultra high performance liquid chromatography coupled to a linear quadrupole ion trap-Orbitrap mass spectrometer. , 2012, Analytical chemistry.

[49]  T. Rudge,et al.  Murine Cytomegalovirus Stimulates Cellular Thymidylate Synthase Gene Expression in Quiescent Cells and Requires the Enzyme for Replication , 2000, Journal of Virology.

[50]  Oliver Fiehn,et al.  Seven Golden Rules for heuristic filtering of molecular formulas obtained by accurate mass spectrometry , 2007, BMC Bioinformatics.

[51]  Dean P. Jones,et al.  High-performance metabolic profiling with dual chromatography-Fourier-transform mass spectrometry (DC-FTMS) for study of the exposome , 2011, Metabolomics.

[52]  Oliver Fiehn,et al.  Managing Complexity - How Many Platforms Do We Need for Metabolomics? , 2010 .

[53]  Gabi Kastenmüller,et al.  metaP-Server: A Web-Based Metabolomics Data Analysis Tool , 2010, Journal of biomedicine & biotechnology.

[54]  Matej Oresic,et al.  MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data , 2010, BMC Bioinformatics.

[55]  M E J Newman,et al.  Finding and evaluating community structure in networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[56]  R. Abagyan,et al.  XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. , 2006, Analytical chemistry.

[57]  R. Deberardinis,et al.  Cellular Metabolism and Disease: What Do Metabolic Outliers Teach Us? , 2012, Cell.

[58]  S. Landolfo,et al.  Expression of an Altered Ribonucleotide Reductase Activity Associated with the Replication of Murine Cytomegalovirus in Quiescent Fibroblasts , 2000, Journal of Virology.

[59]  A. Caudy,et al.  Riboneogenesis in Yeast , 2011, Cell.

[60]  K. Vasquez,et al.  Glutathione levels in antigen-presenting cells modulate Th1 versus Th2 response patterns. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[61]  Shuzhao Li,et al.  Systems vaccinology: Probing humanity’s diverse immune systems with vaccines , 2014, Proceedings of the National Academy of Sciences.

[62]  Tobias Müller,et al.  Identifying functional modules in protein–protein interaction networks: an integrated exact approach , 2008, ISMB.

[63]  D. Vitkup,et al.  New surveyor tools for charting microbial metabolic maps , 2008, Nature Reviews Microbiology.

[64]  R. Abagyan,et al.  METLIN: A Metabolite Mass Spectral Database , 2005, Therapeutic drug monitoring.

[65]  G. Filomeni,et al.  Antigen-presenting dendritic cells provide the reducing extracellular microenvironment required for T lymphocyte activation , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[66]  David S. Wishart,et al.  Bioinformatics Applications Note Systems Biology Metpa: a Web-based Metabolomics Tool for Pathway Analysis and Visualization , 2022 .

[67]  Simon Rogers,et al.  Probabilistic assignment of formulas to mass peaks in metabolomics experiments , 2009, Bioinform..

[68]  David S. Wishart,et al.  HMDB: a knowledgebase for the human metabolome , 2008, Nucleic Acids Res..

[69]  J. Kipnis,et al.  Extracellular Redox Modulation by Regulatory T Cells† , 2009, Nature chemical biology.

[70]  Ralf J. M. Weber,et al.  Mass appeal: metabolite identification in mass spectrometry-focused untargeted metabolomics , 2012, Metabolomics.

[71]  Jianguo Xia,et al.  Web-based inference of biological patterns, functions and pathways from metabolomic data using MetaboAnalyst , 2011, Nature Protocols.

[72]  Ernesto S. Nakayasu,et al.  Model-driven multi-omic data analysis elucidates metabolic immunomodulators of macrophage activation , 2012, Molecular systems biology.

[73]  I. Bernátová,et al.  Biochemical aspects of nitric oxide synthase feedback regulation by nitric oxide , 2011, Interdisciplinary toxicology.

[74]  Ralf Tautenhahn,et al.  An accelerated workflow for untargeted metabolomics using the METLIN database , 2012, Nature Biotechnology.