Abnormal motoneuron migration, differentiation, and axon outgrowth in spinal muscular atrophy

[1]  M. Strong,et al.  Motor Neuron Disorders , 2018, Greenfield's Neuropathology - Two Volume Set.

[2]  G. Levy,et al.  The changing natural history of spinal muscular atrophy type 1 , 2007, Neurology.

[3]  L. Zitvogel,et al.  Cell death modalities: classification and pathophysiological implications , 2007, Cell Death and Differentiation.

[4]  G. Battaglia,et al.  Axonal-SMN (a-SMN), a protein isoform of the survival motor neuron gene, is specifically involved in axonogenesis , 2007, Proceedings of the National Academy of Sciences.

[5]  C. Lorson,et al.  Survival Motor Neuron Function in Motor Axons Is Independent of Functions Required for Small Nuclear Ribonucleoprotein Biogenesis , 2006, The Journal of Neuroscience.

[6]  B. Giraudeau,et al.  SMN1 gene, but not SMN2, is a risk factor for sporadic ALS , 2006, Neurology.

[7]  G. Battaglia,et al.  Neuronal-Specific Roles of the Survival Motor Neuron Protein: Evidence From Survival Motor Neuron Expression Patterns in the Developing Human Central Nervous System , 2006, Journal of neuropathology and experimental neurology.

[8]  G. Novelli,et al.  Transmission ratio distortion in the spinal muscular atrophy locus , 2005, Neurology.

[9]  L. H. van den Berg,et al.  SMN genotypes producing less SMN protein increase susceptibility to and severity of sporadic ALS , 2005, Neurology.

[10]  A. Kesari,et al.  Genotype-Phenotype correlation of SMN locus genes in spinal muscular atrophy patients from India , 2005, Experimental & Molecular Medicine.

[11]  K. Schilling,et al.  Characterization of the neuronal marker NeuN as a multiply phosphorylated antigen with discrete subcellular localization , 2005, Journal of neuroscience research.

[12]  Michael Sendtner,et al.  Smn, the spinal muscular atrophy–determining gene product, modulates axon growth and localization of β-actin mRNA in growth cones of motoneurons , 2003, The Journal of cell biology.

[13]  U. Monani,et al.  Molecular, Cellular and Developmental Biology Program – Specialization 2018/2019 , 2017 .

[14]  A. Fidziańska,et al.  Motoneuron death in normal and spinal muscular atrophy-affected human fetuses , 2002, Acta Neuropathologica.

[15]  T. Wienker,et al.  Quantitative analyses of SMN1 and SMN2 based on real-time lightCycler PCR: fast and highly reliable carrier testing and prediction of severity of spinal muscular atrophy. , 2002, American journal of human genetics.

[16]  C. Lorson,et al.  A Direct Interaction between the Survival Motor Neuron Protein and p53 and Its Relationship to Spinal Muscular Atrophy* , 2002, The Journal of Biological Chemistry.

[17]  T. M. Nguyen,et al.  Nuclear gems and Cajal (coiled) bodies in fetal tissues: nucleolar distribution of the spinal muscular atrophy protein, SMN. , 2001, Experimental cell research.

[18]  Douglas A. Kerr,et al.  Survival motor neuron protein modulates neuron-specific apoptosis. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[19]  G. Šimić,et al.  Ultrastructural Analysis and TUNEL Demonstrate Motor Neuron Apoptosis in Werdnig‐Hoffmann Disease , 2000, Journal of neuropathology and experimental neurology.

[20]  M. Brasch,et al.  Direct interaction of Smn with dp103, a putative RNA helicase: a role for Smn in transcription regulation? , 2000, Human molecular genetics.

[21]  Y. Tsujimoto,et al.  Regions essential for the interaction between Bcl-2 and SMN, the spinal muscular atrophy disease gene product , 2000, Cell Death and Differentiation.

[22]  J. McPherson,et al.  A single nucleotide difference that alters splicing patterns distinguishes the SMA gene SMN1 from the copy gene SMN2. , 1999, Human molecular genetics.

[23]  C. Lorson,et al.  A single nucleotide in the SMN gene regulates splicing and is responsible for spinal muscular atrophy. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[24]  B. Pettmann,et al.  Subcellular distribution of survival motor neuron (SMN) protein: possible involvement in nucleocytoplasmic and dendritic transport , 1999, The European journal of neuroscience.

[25]  D. Parsons,et al.  Intragenic telSMN mutations: frequency, distribution, evidence of a founder effect, and modification of the spinal muscular atrophy phenotype by cenSMN copy number. , 1998, American journal of human genetics.

[26]  Klaus Zerres,et al.  Identification of a candidate modifying gene for spinal muscular atrophy by comparative genomics , 1998, Nature Genetics.

[27]  C. Lorson,et al.  SMN oligomerization defect correlates with spinal muscular atrophy severity , 1998, Nature Genetics.

[28]  M. Iwata,et al.  Characterizations of heterotopic neurons in the spinal cord of amyotrophic lateral sclerosis patients , 1998, Acta Neuropathologica.

[29]  N. Bošnjak,et al.  Deletions in the SMN and NAIP genes in patients with spinal muscular atrophy in Croatia. , 1997, Collegium antropologicum.

[30]  Noriko Yasuhara,et al.  Synergistic anti-apoptotic activity between Bcl-2 and SMN implicated in spinal muscular atrophy , 1997, Nature.

[31]  S. M. Chou,et al.  Aberrant glycosylation/phosphorylation in chromatolytic motoneurons of Werdnig-Hoffmann disease 1 Reported at the International Child Neurology Association, October 4, 1994, in San Francisco, CA, USA. 1 , 1997, Journal of the Neurological Sciences.

[32]  M. Zeviani,et al.  Expression of the SMN gene, the spinal muscular atrophy determining gene, in the mammalian central nervous system. , 1997, Human molecular genetics.

[33]  G. Dreyfuss,et al.  The SMN–SIP1 Complex Has an Essential Role in Spliceosomal snRNP Biogenesis , 1997, Cell.

[34]  A. Munnich,et al.  Large scale deletions of the 5q13 region are specific to Werdnig-Hoffmann disease. , 1996, Journal of medical genetics.

[35]  M. van Lookeren Campagne,et al.  Microwave-enhanced in situ end-labeling of fragmented DNA: parametric studies in relation to postmortem delay and fixation of rat and human brain. , 1995, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[36]  L. Kunkel,et al.  Expressed cadherin pseudogenes are localized to the critical region of the spinal muscular atrophy gene. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[37]  J. Weissenbach,et al.  Identification and characterization of a spinal muscular atrophy-determining gene , 1995, Cell.

[38]  T. Crawford,et al.  The gene for neuronal apoptosis inhibitory protein is partially deleted in individuals with spinal muscular atrophy , 1995, Cell.

[39]  K. Hirayama,et al.  COEXISTENCE OF AMYOTROPHIC LATERAL SCLEROSIS AND WERDNIG-HOFFMANN DISEASE WITHIN A FAMILY , 1993 .

[40]  O. Guntinas-Lichius,et al.  Simplified nerve cell counting in the rat brainstem with the physical disector using a drawing‐microscope , 1993, Journal of microscopy.

[41]  M. Swash,et al.  Heterotopic neurons in amyotrophic lateral sclerosis , 1993, Neurology.

[42]  M. Billiard,et al.  Coexistence of amyotrophic lateral sclerosis and Werdnig-Hoffmann disease within a family , 1993, Journal of the Neurological Sciences.

[43]  J. H. Dierendonck,et al.  A new method to detect apoptosis in paraffin sections: in situ end-labeling of fragmented DNA. , 1993, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[44]  C. Miller,et al.  Heterotopic neurons in spinal cord of patients with ALS , 1989, Neurology.

[45]  D. Mcilwain,et al.  Astrocytic Proteins in the Dorsal and Ventral Roots in Amyotrophic Lateral Sclerosis and Werdnig‐Hoffmann Disease , 1984, Journal of neuropathology and experimental neurology.

[46]  N. Ghatak Spinal roots in Werdnig-Hoffmann disease , 1978, Acta Neuropathologica.

[47]  V. Dubowitz Muscle disorders in childhood. , 1977, Major problems in clinical pediatrics.

[48]  A. Marshall,et al.  Sensory system involvement in infantile spinal muscular atrophy , 1975, Journal of the Neurological Sciences.

[49]  G. Werdnig,et al.  Zwei frühinfantile hereditäre Fälle von progressiver Muskelatrophie unter dem Bilde der Dystrophie, aber anf neurotischer Grundlage , 1891, Archiv für Psychiatrie und Nervenkrankheiten.

[50]  M. Barceló,et al.  SMN2 copy number predicts acute or chronic spinal muscular atrophy but does not account for intrafamilial variability in siblings , 2005, Journal of Neurology.

[51]  P. Clarke,et al.  Developmental cell death: morphological diversity and multiple mechanisms , 2004, Anatomy and Embryology.

[52]  Y. Sasaki,et al.  A neuropathologic study of Werdnig-Hoffmann disease with special reference to the thalamus and posterior roots , 2004, Acta Neuropathologica.

[53]  B. Wirth,et al.  Molecular analysis of spinal muscular atrophy and modification of the phenotype by SMN2 , 2002, Genetics in Medicine.

[54]  M. Luca,et al.  Subcellular localization and axonal transport of the survival motor neuron (SMN) protein in the developing rat spinal cord. , 2000, Human molecular genetics.

[55]  木村 透 Glial bundles in spinal nerve roots : an immunocytochemical study stressing their nonspecificity in various spinal cord and peripheral nerve diseases , 1986 .