Spidroin N-terminal domain forms amyloid-like fibril based hydrogels and provides a protein immobilization platform

[1]  N. Pugno,et al.  High-yield production of a super-soluble miniature spidroin for biomimetic high-performance materials , 2021, Materials Today.

[2]  T. Scheibel,et al.  Recombinant Spider Silk Gels Derived from Aqueous–Organic Solvents as Depots for Drugs , 2021, Angewandte Chemie.

[3]  D. Kaplan,et al.  On-Demand Regulation of Dual Thermosensitive Protein Hydrogels. , 2021, ACS macro letters.

[4]  V. Kessler,et al.  Protein Nanofibrils and Their Hydrogel Formation with Metal Ions , 2021, ACS nano.

[5]  D. Otzen,et al.  Breakdown of supersaturation barrier links protein folding to amyloid formation , 2021, Communications biology.

[6]  J. Johansson,et al.  Native-like Flow Properties of an Artificial Spider Silk Dope , 2021, ACS biomaterials science & engineering.

[7]  J. Johansson,et al.  Properties of Biomimetic Artificial Spider Silk Fibers Tuned by PostSpin Bath Incubation , 2020, Molecules.

[8]  R. Riek,et al.  α-Synuclein aggregation nucleates through liquid–liquid phase separation , 2020, Nature Chemistry.

[9]  J. Pérez-Rigueiro,et al.  Structure-function relationship of artificial spider silk fibers produced by straining flow spinning. , 2020, Biomacromolecules.

[10]  T. Scheibel,et al.  Functionalized DNA-spider silk nanohydrogels for controlled protein binding and release , 2020, Materials today. Bio.

[11]  R. Breitling,et al.  The effect of terminal globular domains on the response of recombinant mini-spidroins to fiber spinning triggers , 2020, bioRxiv.

[12]  P. Neubauer,et al.  Thermophilic nucleoside phosphorylases: Their properties, characteristics and applications. , 2020, Biochimica et biophysica acta. Proteins and proteomics.

[13]  J. Johansson,et al.  High intracellular stability of the spidroin N‐terminal domain in spite of abundant amyloidogenic segments revealed by in‐cell hydrogen/deuterium exchange mass spectrometry , 2019, The FEBS journal.

[14]  Christopher M Johnson,et al.  Methionine in a protein hydrophobic core drives tight interactions required for assembly of spider silk , 2019, Nature Communications.

[15]  M. Hedenqvist,et al.  Protein nanofibrils: Preparation, properties, and possible applications in industrial nanomaterials , 2019, Industrial Applications of Nanomaterials.

[16]  J. Roehling,et al.  Hierarchical spidroin micellar nanoparticles as the fundamental precursors of spider silks , 2018, Proceedings of the National Academy of Sciences.

[17]  Anthony Atala,et al.  Optimization of gelatin–alginate composite bioink printability using rheological parameters: a systematic approach , 2018, Biofabrication.

[18]  E. Walshaw,et al.  A systematic approach , 2018, BDJ.

[19]  Hippolyte Amaveda,et al.  Combined experimental and computational characterization of crosslinked collagen-based hydrogels , 2018, PloS one.

[20]  G. Irace,et al.  Insights into Insulin Fibril Assembly at Physiological and Acidic pH and Related Amyloid Intrinsic Fluorescence , 2017, International journal of molecular sciences.

[21]  T. Scheibel,et al.  Recombinant spider silk-based bioinks , 2017, Biofabrication.

[22]  J. Johansson,et al.  Degree of Biomimicry of Artificial Spider Silk Spinning Assessed by NMR Spectroscopy. , 2017, Angewandte Chemie.

[23]  Christopher Thamm,et al.  Characterization of Hydrogels Made of a Novel Spider Silk Protein eMaSp1s and Evaluation for 3D Printing. , 2017, Macromolecular bioscience.

[24]  C. Robinson,et al.  Efficient protein production inspired by how spiders make silk , 2017, Nature Communications.

[25]  David N. Nicholson,et al.  The Nephila clavipes genome highlights the diversity of spider silk genes and their complex expression , 2017, Nature Genetics.

[26]  G. Plaza,et al.  Biomimetic spinning of artificial spider silk from a chimeric minispidroin. , 2017, Nature chemical biology.

[27]  Chris Holland,et al.  Progress and Trends in Artificial Silk Spinning: A Systematic Review. , 2017, ACS biomaterials science & engineering.

[28]  E. Marklund,et al.  Mass spectrometry captures structural intermediates in protein fiber self-assembly† †Electronic supplementary information (ESI) available: Supplementary methods and Fig. S1. See DOI: 10.1039/c7cc00307b Click here for additional data file. , 2017, Chemical communications.

[29]  T. Scheibel,et al.  Cations influence the cross-linking of hydrogels made of recombinant, polyanionic spider silk proteins , 2016 .

[30]  C. Holland,et al.  The Rheology behind Stress-Induced Solidification in Native Silk Feedstocks , 2016, International journal of molecular sciences.

[31]  P. Wright,et al.  Solid-State NMR Studies Reveal Native-like β-Sheet Structures in Transthyretin Amyloid. , 2016, Biochemistry.

[32]  Chiu Fan Lee,et al.  Dynamics of the formation of a hydrogel by a pathogenic amyloid peptide: islet amyloid polypeptide , 2016, Scientific Reports.

[33]  B. Olsen,et al.  Arrested Phase Separation of Elastin-like Polypeptide Solutions Yields Stiff, Thermoresponsive Gels. , 2015, Biomacromolecules.

[34]  P. Palumaa,et al.  Insulin Fibrillization at Acidic and Physiological pH Values is Controlled by Different Molecular Mechanisms , 2015, The Protein Journal.

[35]  Xiao-Xia Xia,et al.  Dual Thermosensitive Hydrogels Assembled from the Conserved C-Terminal Domain of Spider Dragline Silk. , 2015, Biomacromolecules.

[36]  J. Johansson,et al.  Diversified Structural Basis of a Conserved Molecular Mechanism for pH‐Dependent Dimerization in Spider Silk N‐Terminal Domains , 2015, ChemBioChem.

[37]  Anna Rising,et al.  Toward spinning artificial spider silk. , 2015, Nature chemical biology.

[38]  T. Scheibel,et al.  Biofabrication of cell-loaded 3D spider silk constructs. , 2015, Angewandte Chemie.

[39]  J. Johansson,et al.  Carbonic Anhydrase Generates CO2 and H+ That Drive Spider Silk Formation Via Opposite Effects on the Terminal Domains , 2014, PLoS biology.

[40]  H. D. de Jongh,et al.  Fibril formation from pea protein and subsequent gel formation. , 2014, Journal of agricultural and food chemistry.

[41]  Jerker Widengren,et al.  Sequential pH-driven dimerization and stabilization of the N-terminal domain enables rapid spider silk formation , 2014, Nature Communications.

[42]  Janelle E. Jenkins,et al.  Characterizing the secondary protein structure of black widow dragline silk using solid-state NMR and X-ray diffraction. , 2013, Biomacromolecules.

[43]  J. Johansson,et al.  Morphology and composition of the spider major ampullate gland and dragline silk. , 2013, Biomacromolecules.

[44]  Qing Meng,et al.  Full-Length Minor Ampullate Spidroin Gene Sequence , 2012, PloS one.

[45]  Hans Jörnvall,et al.  pH-dependent dimerization of spider silk N-terminal domain requires relocation of a wedged tryptophan side chain. , 2012, Journal of molecular biology.

[46]  A M Hodge,et al.  Elastic and viscoelastic characterization of agar. , 2012, Journal of the mechanical behavior of biomedical materials.

[47]  E. Mohammadi,et al.  Barriers and facilitators related to the implementation of a physiological track and trigger system: A systematic review of the qualitative evidence , 2017, International journal for quality in health care : journal of the International Society for Quality in Health Care.

[48]  T. Scheibel,et al.  Controlled hydrogel formation of a recombinant spider silk protein. , 2011, Biomacromolecules.

[49]  Thomas Scheibel,et al.  pH-dependent dimerization and salt-dependent stabilization of the N-terminal domain of spider dragline silk--implications for fiber formation. , 2011, Angewandte Chemie.

[50]  Christopher M. Dobson,et al.  Local Cooperativity in an Amyloidogenic State of Human Lysozyme Observed at Atomic Resolution , 2010, Journal of the American Chemical Society.

[51]  Chuan-he Tang,et al.  Formation and characterization of amyloid-like fibrils from soy β-conglycinin and glycinin. , 2010, Journal of agricultural and food chemistry.

[52]  Kyle L. Morris,et al.  Exploring the sequence determinants of amyloid structure using position-specific scoring matrices , 2010, Nature Methods.

[53]  Sunghyun Cho,et al.  Amyloid hydrogel derived from curly protein fibrils of alpha-synuclein. , 2010, Biomaterials.

[54]  Anna Rising,et al.  Self-assembly of spider silk proteins is controlled by a pH-sensitive relay , 2010, Nature.

[55]  Thomas Scheibel,et al.  A conserved spider silk domain acts as a molecular switch that controls fibre assembly , 2010, Nature.

[56]  David Eisenberg,et al.  Identifying the amylome, proteins capable of forming amyloid-like fibrils , 2010, Proceedings of the National Academy of Sciences.

[57]  Fabrizio Chiti,et al.  Amyloid formation by globular proteins under native conditions. , 2009, Nature chemical biology.

[58]  Janelle E. Jenkins,et al.  Quantifying the fraction of glycine and alanine in beta-sheet and helical conformations in spider dragline silk using solid-state NMR. , 2008, Chemical communications.

[59]  Janelle E. Jenkins,et al.  Determining secondary structure in spider dragline silk by carbon-carbon correlation solid-state NMR spectroscopy. , 2008, Journal of the American Chemical Society.

[60]  Anna Rising,et al.  Structural properties of recombinant nonrepetitive and repetitive parts of major ampullate spidroin 1 from Euprosthenops australis: implications for fiber formation. , 2008, Biochemistry.

[61]  R. Boom,et al.  Micrometer-sized fibrillar protein aggregates from soy glycinin and soy protein isolate. , 2007, Journal of agricultural and food chemistry.

[62]  F Vollrath,et al.  Comparing the rheology of native spider and silkworm spinning dope , 2006, Nature materials.

[63]  Anna Rising,et al.  N-terminal nonrepetitive domain common to dragline, flagelliform, and cylindriform spider silk proteins. , 2006, Biomacromolecules.

[64]  R. Wetzel Kinetics and thermodynamics of amyloid fibril assembly. , 2006, Accounts of chemical research.

[65]  Todd A Blackledge,et al.  Silken toolkits: biomechanics of silk fibers spun by the orb web spider Argiope argentata (Fabricius 1775) , 2006, Journal of Experimental Biology.

[66]  S. Goodacre,et al.  Evolution of spider silks: conservation and diversification of the C‐terminus , 2006, Insect molecular biology.

[67]  A. Miranker,et al.  A native to amyloidogenic transition regulated by a backbone trigger , 2006, Nature Structural &Molecular Biology.

[68]  S. Rammensee,et al.  Rheological characterization of hydrogels formed by recombinantly produced spider silk , 2006 .

[69]  B. Meier,et al.  NMR characterization of native liquid spider dragline silk from Nephila edulis. , 2004, Biomacromolecules.

[70]  David L. Kaplan,et al.  Mechanism of silk processing in insects and spiders , 2003, Nature.

[71]  F. Vollrath,et al.  Amyloidogenic nature of spider silk. , 2002, European journal of biochemistry.

[72]  Oleg Jardetzky,et al.  Probability‐based protein secondary structure identification using combined NMR chemical‐shift data , 2002, Protein science : a publication of the Protein Society.

[73]  Kiyonori Takegoshi,et al.  13C–1H dipolar-assisted rotational resonance in magic-angle spinning NMR , 2001 .

[74]  Fritz Vollrath,et al.  Changes in element composition along the spinning duct in a Nephila spider , 2001, Naturwissenschaften.

[75]  D. Baker,et al.  Native protein sequences are close to optimal for their structures. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[76]  M. Knight,et al.  Beta transition and stress-induced phase separation in the spinning of spider dragline silk. , 2000, International journal of biological macromolecules.

[77]  B. Fung,et al.  An improved broadband decoupling sequence for liquid crystals and solids. , 2000, Journal of magnetic resonance.

[78]  F Guilak,et al.  Compressive and shear properties of alginate gel: effects of sodium ions and alginate concentration. , 1999, Journal of biomedical materials research.

[79]  R. Lewis,et al.  Hypotheses that correlate the sequence, structure, and mechanical properties of spider silk proteins. , 1999, International journal of biological macromolecules.

[80]  P. Lansbury,et al.  Models of amyloid seeding in Alzheimer's disease and scrapie: mechanistic truths and physiological consequences of the time-dependent solubility of amyloid proteins. , 1997, Annual review of biochemistry.

[81]  L W Jelinski,et al.  13C NMR of Nephila clavipes major ampullate silk gland. , 1996, Biophysical journal.

[82]  L. Jelinski,et al.  Solid-State 13C NMR of Nephila clavipes Dragline Silk Establishes Structure and Identity of Crystalline Regions , 1994 .

[83]  P. Lansbury,et al.  Seeding “one-dimensional crystallization” of amyloid: A pathogenic mechanism in Alzheimer's disease and scrapie? , 1993, Cell.

[84]  R. Griffin,et al.  Chemical shift correlation spectroscopy in rotating solids: Radio frequency‐driven dipolar recoupling and longitudinal exchange , 1992 .

[85]  E. Wilander,et al.  ISLET AMYLOID POLYPEPTIDE , 1987, The Lancet.

[86]  H. Kricheldorf,et al.  Secondary structure of peptides. 3. Carbon-13 NMR cross polarization/magic angle spinning spectroscopic characterization of solid polypeptides , 1983 .