Systematic Analysis of the Photocurrent Spectroscopy on InGaN/GaN Blue Light-Emitting Diodes

We demonstrate a method of systematic analysis for the photocurrent spectroscopy on InGaN/GaN light-emitting diodes (LEDs). By normalizing photocurrent data at a photon energy of 3.2 eV for blue LEDs, we show that accurate comparison of active quantum wells is possible. Bias-dependent photocurrent measurements reveal that there are fixed points in photocurrent data from which an effective bandgap energy can be determined. The method presented in this paper can be useful when one needs to compare the LEDs fabricated at different times or by different processes.

[1]  Robert W. Martin,et al.  Origin of Luminescence from InGaN Diodes , 1999 .

[2]  Kazumi Wada,et al.  Exciton localization in InGaN quantum well devices , 1998 .

[3]  Jong-In Shim,et al.  Study of droop phenomena in InGaN-based blue and green light-emitting diodes by temperature-dependent electroluminescence , 2012 .

[4]  Shuji Nakamura,et al.  Measurement of electron overflow in 450 nm InGaN light-emitting diode structures , 2009 .

[5]  Jong-In Shim,et al.  An Explanation of Efficiency Droop in InGaN-based Light Emitting Diodes: Saturated Radiative Recombination Rate at Randomly Distributed In-Rich Active Areas , 2011 .

[6]  Xian-An Cao,et al.  Electrical characteristics of InGaN∕GaN light-emitting diodes grown on GaN and sapphire substrates , 2004 .

[7]  Hai Lu,et al.  Forward tunneling current in GaN-based blue light-emitting diodes , 2010 .

[8]  Han-Youl Ryu,et al.  Analysis of Time-resolved Photoluminescence of InGaN Quantum Wells Using the Carrier Rate Equation , 2010 .

[9]  Petr G. Eliseev,et al.  BLUE TEMPERATURE-INDUCED SHIFT AND BAND-TAIL EMISSION IN INGAN-BASED LIGHT SOURCES , 1997 .

[10]  E. Fred Schubert,et al.  Origin of efficiency droop in GaN-based light-emitting diodes , 2007 .

[11]  S. Denbaars,et al.  Well-width dependent studies of InGaN-GaN single-quantum wells using time-resolved photoluminescence techniques , 1997 .

[12]  Han-Youl Ryu,et al.  Measurement of Internal Electric Field in GaN-Based Light-Emitting Diodes , 2012, IEEE Journal of Quantum Electronics.

[13]  E. Schubert,et al.  Analytic model for the efficiency droop in semiconductors with asymmetric carrier-transport properties based on drift-induced reduction of injection efficiency , 2012 .

[14]  S.C. Wang,et al.  Temperature-Dependent Electroluminescence Efficiency in Blue InGaN–GaN Light-Emitting Diodes With Different Well Widths , 2010, IEEE Photonics Technology Letters.

[15]  H. Amano,et al.  Piezoelectric Polarization in GaInN/GaN Heterostructures and Some Consequences for Device Design , 2000 .

[16]  H. Liu,et al.  Temperature-dependent emission intensity and energy shift in InGaN/GaN multiple-quantum-well light-emitting diodes , 2003 .

[17]  R. Martin,et al.  Exciton localization and the Stokes’ shift in InGaN epilayers , 1999 .

[18]  Oliver Ambacher,et al.  Evidence for nonlinear macroscopic polarization in III-V nitride alloy heterostructures , 2002 .

[19]  Jong Kyu Kim,et al.  Solid-State Light Sources Getting Smart , 2005, Science.

[20]  Shigeru Nakagawa,et al.  Determination of piezoelectric fields in strained GaInN quantum wells using the quantum-confined Stark effect , 1998 .

[21]  P. Perlin,et al.  Photocurrent spectroscopy as a tool for determining piezoelectric fields in In x Ga 1 − x N / G a N multiple quantum well light emitting diodes , 2004 .

[22]  James S. Speck,et al.  Prospects for LED lighting , 2009 .

[23]  Larry A. Coldren,et al.  Effective band gap inhomogeneity and piezoelectric field in InGaN/GaN multiquantum well structures , 1998 .

[24]  Umesh K. Mishra,et al.  “S-shaped” temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells , 1998 .

[25]  David Vanderbilt,et al.  Spontaneous polarization and piezoelectric constants of III-V nitrides , 1997 .