Nonlinearity Compensation in a Fiber-Optic Link by Optical Phase Conjugation

Abstract This article is intended as a guide to the techniques for nonlinearity compensation in a fiber-optic communication link based on optical phase conjugation. In the first part, the basics of the phase conjugation process are illustrated from both a mathematical and physical point of view. Then, the more commonly used devices for optical phase conjugation are described, with particular attention to the devices based on periodically poled lithium niobate waveguides. Subsequently, the applications of optical phase conjugation to the nonlinearity compensation of amplitude-modulated and phase-modulated signals are analyzed.

[1]  F. Matera,et al.  Numerical and experimental comparison of dispersion compensation techniques on different fibers , 2002, IEEE Photonics Technology Letters.

[2]  Manya Ghobadi,et al.  Optical Networks , 2000 .

[3]  Kun Xu,et al.  Dispersion-Compensation Schemes for 160-Gb/s 1200-km Transmission by Optical Phase Conjugation , 2007, Journal of Lightwave Technology.

[4]  M. Fontana,et al.  Optical damage resistance in undoped LiNbO3 crystals , 2001 .

[5]  R. Soref,et al.  All-silicon active and passive guided-wave components for λ = 1.3 and 1.6 µm , 1986 .

[6]  S. Turitsyn,et al.  Ultralong Raman fiber lasers as virtually lossless optical media. , 2006, Physical review letters.

[7]  Dirk Breuer,et al.  Nonlinearity-insensitive standard-fibre transmission based on optical-phase conjugation in a semiconductor-laser amplifier , 1994 .

[8]  D. Q. Chowdhury,et al.  Intrachannel nonlinear penalties in dispersion-managed transmission systems , 2002 .

[9]  Jingjun Xu,et al.  Highly optical damage resistant crystal: Zirconium-oxide-doped lithium niobate , 2007 .

[10]  K. Kikuchi,et al.  Simultaneous Cancellation of Fiber Loss, Dispersion, and Kerr Effect in Ultralong-Haul Optical Fiber Transmission by Midway Optical Phase Conjugation Incorporated With Distributed Raman Amplification , 2007, Journal of Lightwave Technology.

[11]  F. Curti,et al.  In-Field n × 40 Gb/s Transmission Experiments with In-Line All-Optical Wavelength Conversion , 2005 .

[12]  P. Spano,et al.  Optical spectral inversion without frequency shift by four-wave mixing using two pumps with orthogonal polarization , 1998, IEEE Photonics Technology Letters.

[13]  A.H. Gnauck,et al.  Compensating the compensator: a demonstration of nonlinearity cancellation in a WDM system , 1995, IEEE Photonics Technology Letters.

[14]  I. Cristiani,et al.  Polarization-insensitive wavelength conversion in a lithium niobate waveguide by the cascading technique , 2002, IEEE Photonics Technology Letters.

[15]  K. Kikuchi,et al.  Design theory of long-distance optical transmission systems using midway optical phase conjugation , 1997 .

[16]  M M Fejer,et al.  1.5-microm-band wavelength conversion based on difference-frequency generation in LiNbO3 waveguides with integrated coupling structures. , 1998, Optics letters.

[17]  C. Boisrobert,et al.  Fiber Optic Communication Systems , 1979 .

[18]  P. Spano,et al.  Efficiency flattening and equalization of frequency up- and down-conversion using four-wave mixing in semiconductor optical amplifiers , 1998, IEEE Photonics Technology Letters.

[19]  A. Mecozzi,et al.  Analysis of intrachannel nonlinear effects in highly dispersed optical pulse transmission , 2000, IEEE Photonics Technology Letters.

[20]  Shigeki Watanabe,et al.  Exact compensation for both chromatic dispersion and Kerr effect in a transmission fiber using optical phase conjugation , 1996 .

[21]  A Yariv,et al.  Compensation for channel dispersion by nonlinear optical phase conjugation. , 1979, Optics letters.

[22]  H. Weber,et al.  Four-wave mixing in semiconductor optical amplifiers for frequency conversion and fast optical switching , 1997 .

[23]  H. de Waardt,et al.  Reduction of Gordon-Mollenauer phase noise by midlink spectral inversion , 2005, IEEE Photonics Technology Letters.

[24]  C. Xie,et al.  Reduction of soliton phase jitter by in-line phase conjugation. , 2003, Optics letters.

[25]  Young-Geun Han,et al.  Bismuth nonlinear fibre-based optical phase conjugator without SBS-induced efficiency limitation and its application to dispersion compensation in transmission link , 2006 .

[26]  M. Wöhlecke,et al.  Optical Damage Resistance in Lithium Niobate , 2007 .

[27]  J.P.R. Lacey,et al.  Four-channel polarization-insensitive optically transparent wavelength converter , 1997, IEEE Photonics Technology Letters.

[28]  Paolo Minzioni,et al.  Unifying theory of compensation techniques for intrachannel nonlinear effects. , 2005, Optics express.

[29]  F. Matera,et al.  Field demonstration of in-line all-optical wavelength conversion in a WDM dispersion managed 40-Gbit/s link , 2004, IEEE Journal of Selected Topics in Quantum Electronics.

[30]  José Chesnoy Undersea fiber communication systems , 2002 .

[31]  Colin J. McKinstrie,et al.  Phase jitter in single-channel soliton systems with constant dispersion , 2002 .

[32]  Theoretical study on the performance of optical phase conjugation for ultra long-haul differential phase-shift-keyed transmission , 2007, 2007 Quantum Electronics and Laser Science Conference.

[33]  M. Fejer,et al.  Annealed proton-exchanged LiNbO(3) waveguides. , 1991, Optics letters.

[34]  J. Gordon,et al.  Phase noise in photonic communications systems using linear amplifiers. , 1990, Optics letters.

[35]  Ying-Hao Kuo,et al.  High efficiency wavelength conversion of 10 Gb/s data in silicon waveguides. , 2006, Optics express.

[36]  B. Spinnler,et al.  Optical phase conjugation for ultra long-haul phase-shift-keyed transmission , 2006, Journal of Lightwave Technology.

[37]  Francesco Matera,et al.  Nonlinear Optical Communication Networks , 1998 .

[38]  A. Gatto,et al.  Impact of OPC insertion in a WDM link , 2007, 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference.

[39]  R. Claps,et al.  Observation of stimulated Raman amplification in silicon waveguides , 2003, The 16th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2003. LEOS 2003..

[40]  A. Schiffini,et al.  Optimized link design for nonlinearity cancellation by optical phase conjugation , 2004, IEEE Photonics Technology Letters.

[41]  Eugenio Iannone,et al.  Distortions compensation in linear optical links adopting wavelength converters based on FWM in semiconductor amplifiers , 1996 .

[42]  Masaki Asobe,et al.  Reducing photorefractive effect in periodically poled ZnO- and MgO-doped LiNbO3 wavelength converters , 2001 .

[43]  A. Demir,et al.  Nonlinear Phase Noise in Optical-Fiber-Communication Systems , 2007, Journal of Lightwave Technology.

[44]  H. de Waardt,et al.  Long-haul DWDM transmission systems employing optical phase conjugation , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[45]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .

[46]  Martin M. Fejer,et al.  Optical Signal Processing and Switching with Second-Order Nonlinearities in Waveguides , 2000 .

[47]  G. Raybon,et al.  Cancellation of all Kerr nonlinearities in long fiber spans using a LiNbO/sub 3/ phase conjugator and Raman amplification , 2000, Optical Fiber Communication Conference. Technical Digest Postconference Edition. Trends in Optics and Photonics Vol.37 (IEEE Cat. No. 00CH37079).

[48]  S. L. Danielsen,et al.  All-optical wavelength conversion at bit rates above 10 Gb/s using semiconductor optical amplifiers , 1997 .

[49]  C. Langrock,et al.  Experimental demonstration of nonlinearity and dispersion compensation in an embedded link by optical phase conjugation , 2006, IEEE Photonics Technology Letters.

[50]  D. C. Hanna,et al.  Quasi-phase-matched blue light generation in bulk lithium niobate, electrically poled via periodic liquid electrodes , 1994 .

[51]  M. Chbat,et al.  Numerical simulation of 10-Gbit/s transmission over 9000 km with 50-km amplifier spacing using optical phase conjugation in the terminal unit , 1997, Proceedings of Optical Fiber Communication Conference (.

[52]  G. Margaritondo,et al.  Synchrotron light in medical and materials science radiology , 2004 .

[53]  S. Chandrasekhar,et al.  Compensation of intra-channel nonlinearities in 40 Gb/s pseudo-linear systems using optical phase conjugation , 2004, Optical Fiber Communication Conference, 2004. OFC 2004.

[54]  I. Cristiani,et al.  Strongly sublinear growth of the photorefractive effect for increasing pump intensities in doped lithium-niobate crystals , 2007 .

[55]  A. Gnauck,et al.  Cancellation of timing and amplitude jitter in symmetric links using highly dispersed pulses , 2001, IEEE Photonics Technology Letters.

[56]  A. Schiffini,et al.  Techniques for nonlinearity cancellation into embedded links by optical phase conjugation , 2005, Journal of Lightwave Technology.

[57]  H. Haus,et al.  Random walk of coherently amplified solitons in optical fiber transmission. , 1986, Optics letters.

[58]  P. Kaewplung,et al.  Simultaneous suppression of third-order dispersion and sideband instability in single-channel optical fiber transmission by midway optical phase conjugation employing higher order dispersion management , 2003 .

[59]  Haiqing Wei,et al.  Simultaneous nonlinearity suppression and wide-band dispersion compensation using optical phase conjugation. , 2004, Optics express.

[60]  A. Mecozzi Limits to long-haul coherent transmission set by the Kerr nonlinearity and noise of the in-line amplifiers , 1994 .

[61]  Xiang Liu,et al.  Intrachannel four-wave mixing in highly dispersed return-to-zero differential-phase-shift-keyed transmission with a nonsymmetric dispersion map. , 2006, Optics letters.

[62]  S. Chandrasekhar,et al.  Compensation of intrachannel nonlinearities in 40-Gb/s pseudolinear systems using optical-phase conjugation , 2005, Journal of Lightwave Technology.

[63]  D. Fortusini,et al.  Wavelength shifting and amplification of optical pulses through cascaded second-order processes in periodically poled lithium niobate , 1998 .

[64]  T. Chikama,et al.  Cancellation of four-wave mixing in multichannel fibre transmission by midway optical phase conjugation , 1994 .

[65]  Oded Cohen,et al.  Multichannel dispersion compensation using a silicon waveguide-based optical phase conjugator. , 2007, Optics letters.

[66]  M. Shtaif,et al.  System impact of intra-channel nonlinear effects in highly dispersed optical pulse transmission , 2000, IEEE Photonics Technology Letters.

[67]  Hideaki Okayama,et al.  Polarization Insensitive Wavelength Conversions by a LiNbO3 Waveguide Using a Multi-Ring Configuration , 1997 .

[68]  P. Mamyshev,et al.  Pulse-overlapped dispersion-managed data transmission and intrachannel four-wave mixing. , 1999, Optics letters.

[69]  M S Demokan,et al.  Broadband wavelength converter based on four-wave mixing in a highly nonlinear photonic crystal fiber. , 2005, Optics letters.

[70]  A. Willner Optical Fiber Telecommunications IIIB , 1997 .

[71]  M. Fejer,et al.  Simultaneous nonlinearity and dispersion compensation into an embedded link: Experimental demonstration , 2006, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.