Free Material Optimization for Plates and Shells

In this article, we present the Free Material Optimization (FMO) problem for plates and shells based on Naghdi’s shell model. In FMO – a branch of structural optimization – we search for the ultimately best material properties in a given design domain loaded by a set of given forces. The optimization variable is the full material tensor at each point of the design domain. We give a basic formulation of the problem and prove existence of an optimal solution. Lagrange duality theory allows to identify the basic problem as the dual of an infinite-dimensional convex nonlinear semidefinite program. After discretization by the finite element method the latter problem can be solved using a nonlinear SDP code. The article is concluded by a few numerical studies.

[1]  Kurt Maute,et al.  Adaptive topology optimization of shell structures , 1996 .

[2]  Michal Kočvara,et al.  Free Material Optimization: Towards the Stress Constraints , 2007 .

[3]  Michael Stingl,et al.  Solving nonconvex SDP problems of structural optimization with stability control , 2004, Optim. Methods Softw..

[4]  M. Rubin Cosserat Theories: Shells, Rods and Points , 2000 .

[5]  A. Blouza,et al.  Nagdhi's Shell Model: Existence, Uniqueness and Continuous Dependence on the Midsurface , 2001 .

[6]  Isabel N. Figueiredo,et al.  Ellipticity of koiter's and naghdi's models for nonhomogeneous anisotropic shells , 1998 .

[7]  M. P. Bendsøe,et al.  Optimization of material properties for Mindlin plate design , 1993 .

[8]  J. Mach,et al.  Finite Element Analysis of Free Material Optimization Problem , 2004 .

[9]  Martin P. Bendsøe Topology Optimization , 2009, Encyclopedia of Optimization.

[10]  I. Ekeland,et al.  Convex analysis and variational problems , 1976 .

[11]  Manfred Bischoff,et al.  Shape optimization of shells and locking , 2004 .

[12]  M. Kocvara,et al.  Free material optimization for stress constraints , 2007 .

[13]  Michal Kočvara,et al.  Material optimization: bridging the gap between conceptual and preliminary design , 2001 .

[14]  P. M. Naghdi,et al.  The Theory of Shells and Plates , 1973 .

[15]  E. Cosserat,et al.  Théorie des Corps déformables , 1909, Nature.

[16]  Martin P. Bendsøe,et al.  An Analytical Model to Predict Optimal Material Properties in the Context of Optimal Structural Design , 1994 .

[17]  Tomasz Lewiński,et al.  Optimal Shells Formed on a Sphere. The Topological Derivative Method , 1998 .

[18]  Michael Stingl,et al.  PENNON: A code for convex nonlinear and semidefinite programming , 2003, Optim. Methods Softw..

[19]  K. Marti Book Review: D. Chapelle and K.-J. Bathe, The Finite Element Analysis of Shells – Fundamentals. , 2005 .

[20]  Martin P. Bendsøe,et al.  Free material optimization via mathematical programming , 1997, Math. Program..

[21]  Erik Lund,et al.  Discrete material optimization of general composite shell structures , 2005 .

[22]  D. Chapelle,et al.  The Finite Element Analysis of Shells - Fundamentals , 2003 .

[23]  Kazimierz Malanowski,et al.  An Example of a Max-Min Problem in Partial Differential Equations , 1970 .

[24]  Michael R. Greenberg,et al.  Chapter 1 – Theory, Methods, and Applications , 1978 .

[25]  Andreas Lipka Verbesserter Materialeinsatz innovativer Werkstoffe durch die Topologieoptimierung , 2007 .

[26]  Arkadi Nemirovski,et al.  Free Material Design via Semidefinite Programming: The Multiload Case with Contact Conditions , 1999, SIAM Rev..