Near surface properties of mixtures of propylammonium nitrate with n-alkanols 1. Nanostructure.

In situ amplitude modulated-atomic force microscopy (AM-AFM) has been used to probe the nanostructure of mixtures of propylammonium nitrate (PAN) with n-alkanols near a mica surface. PAN is a protic ionic liquid (IL) which has a bicontinuous sponge-like nanostructure of polar and apolar domains in the bulk, which becomes flatter near a solid surface. Mixtures of PAN with 1-butanol, 1-octanol, and 1-dodecanol at 10-70 vol% n-alkanol have been examined, along with each pure n-alkanol, to reveal the effect of composition and n-alkanol chain length. At low concentrations the butanol simply swells the PAN near-surface nanostructure, but at higher concentrations the nanostructure fragments. Octanol and dodecanol first lower the preferred curvature of the PAN near-surface nanostructure because, unlike n-butanol, their alkyl chains are too long to be accommodated alongside the PAN cations. At higher concentrations, octanol and dodecanol self-assemble into n-alkanol rich aggregates in a PAN rich matrix. The concentration at which aggregation first becomes apparent decreases with n-alkanol chain length.

[1]  Katrin Forster-Tonigold,et al.  Toward the microscopic identification of anions and cations at the ionic liquid|Ag(111) interface: a combined experimental and theoretical investigation. , 2013, ACS nano.

[2]  E. Wanless,et al.  Adsorbed and near-surface structure of ionic liquids determines nanoscale friction. , 2013, Chemical communications.

[3]  B. Ocko,et al.  Layering of [BMIM]+-based ionic liquids at a charged sapphire interface. , 2009, The Journal of chemical physics.

[4]  H. Heinz,et al.  Facet Recognition and Molecular Ordering of Ionic Liquids on Metal Surfaces , 2013 .

[5]  H. Butt,et al.  Solvation Forces in Liquid Alcohols Between Solid Surfaces , 2002 .

[6]  R. Atkin,et al.  Pronounced sponge-like nanostructure in propylammonium nitrate. , 2011, Physical chemistry chemical physics : PCCP.

[7]  Martin Vetterli,et al.  Fast Fourier transforms: a tutorial review and a state of the art , 1990 .

[8]  Ricardo Garcia,et al.  Amplitude Modulation Atomic Force Microscopy , 2010 .

[9]  C. Margulis,et al.  What is the origin of the prepeak in the X-ray scattering of imidazolium-based room-temperature ionic liquids? , 2010, The journal of physical chemistry. B.

[10]  A. Pádua,et al.  Nanostructural organization in ionic liquids. , 2006, The journal of physical chemistry. B.

[11]  J. Sader,et al.  Method for the calibration of atomic force microscope cantilevers , 1995 .

[12]  R. Atkin,et al.  Amphiphilicity determines nanostructure in protic ionic liquids. , 2011, Physical chemistry chemical physics : PCCP.

[13]  R. Atkin,et al.  Structure in Confined Room-Temperature Ionic Liquids , 2007 .

[14]  S. Balasubramanian,et al.  Dynamic atomic force microscopy for ionic liquids: massless model shows the way. , 2012, Chemphyschem : a European journal of chemical physics and physical chemistry.

[15]  D. Dragoni,et al.  Interfacial layering of a room-temperature ionic liquid thin film on mica: a computational investigation. , 2012, Chemphyschem : a European journal of chemical physics and physical chemistry.

[16]  G. Wipff,et al.  Ordering of Imidazolium-Based Ionic Liquids at the α-Quartz(001) Surface: A Molecular Dynamics Study , 2008 .

[17]  Rob Atkin,et al.  Nanostructure of the Ionic Liquid-Graphite Stern Layer. , 2015, ACS nano.

[18]  R. Atkin,et al.  Amphiphilic self-assembly of alkanols in protic ionic liquids. , 2014, The journal of physical chemistry. B.

[19]  S. Balasubramanian,et al.  Orientational ordering of ionic liquids near a charged mica surface. , 2012, Chemphyschem : a European journal of chemical physics and physical chemistry.

[20]  F. Endres,et al.  In Situ Scanning Tunnelling Microscopy in Ionic Liquids: Prospects and Challenges , 2007 .

[21]  S. Balasubramanian,et al.  Effect of cation symmetry on the organization of ionic liquids near a charged mica surface , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[22]  M. Müser,et al.  Force microscopy of layering and friction in an ionic liquid. , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[23]  H. Weingärtner,et al.  The Effect of Short‐Range Hydrogen‐Bonded Interactions on the Nature of the Critical Point of Ionic Fluids. Part I: General Properties of the New System Ethylammonium Nitrate+n‐Octanol with an Upper Consolute Point Near Room Temperature , 1993 .

[24]  W. Marsden I and J , 2012 .

[25]  T. Welton,et al.  Self-assembly in the electrical double layer of ionic liquids. , 2011, Chemical communications.

[26]  R. Atkin,et al.  At the interface: solvation and designing ionic liquids. , 2010, Physical chemistry chemical physics : PCCP.

[27]  M. Torkkeli,et al.  Determination of liquid structures of the primary alcohols methanol, ethanol, 1-propanol, 1-butanol and 1-octanol by X-ray scattering , 1995 .

[28]  R. Atkin,et al.  Rheology of protic ionic liquids and their mixtures. , 2013, The journal of physical chemistry. B.

[29]  G. W. Stewart,et al.  X-Ray Diffraction in Liquids: Primary Normal Alcohols , 1927 .

[30]  J. Wilkes A short history of ionic liquids—from molten salts to neoteric solvents , 2002 .

[31]  Tamar L Greaves,et al.  Protic ionic liquids: properties and applications. , 2008, Chemical reviews.

[32]  L. Vlček,et al.  Structural properties of pure simple alcohols from ethanol, propanol, butanol, pentanol, to hexanol: comparing Monte Carlo simulations with experimental SAXS data. , 2007, The journal of physical chemistry. B.

[33]  C. Hardacre,et al.  Small angle neutron scattering from 1-alkyl-3-methylimidazolium hexafluorophosphate ionic liquids ([C(n)mim][PF(6)], n=4, 6, and 8). , 2010, The Journal of chemical physics.

[34]  R. Atkin,et al.  3-Dimensional atomic scale structure of the ionic liquid-graphite interface elucidated by AM-AFM and quantum chemical simulations. , 2014, Nanoscale.

[35]  T. Waldmann,et al.  Imaging an ionic liquid adlayer by scanning tunneling microscopy at the solid|vacuum interface. , 2011, Chemphyschem : a European journal of chemical physics and physical chemistry.

[36]  S. Jarvis,et al.  Visualization of ion distribution at the mica-electrolyte interface. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[37]  H. Matsumoto,et al.  Ab initio study of EMIM-BF 4 molecule adsorption on Li surfaces as a model for ionic liquid/Li interfaces in Li-ion batteries , 2008 .

[38]  K. Han,et al.  Dynamic and structural properties of room-temperature ionic liquids near silica and carbon surfaces. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[39]  M. Roos,et al.  At the ionic liquid|metal interface: structure formation and temperature dependent behavior of an ionic liquid adlayer on Au(111). , 2013, Physical chemistry chemical physics : PCCP.

[40]  R. Caminiti,et al.  Amphiphile Meets Amphiphile: Beyond the Polar-Apolar Dualism in Ionic Liquid/Alcohol Mixtures. , 2014, The journal of physical chemistry letters.

[41]  P. Malfreyt,et al.  Nonequilibrium Molecular Simulations of New Ionic Lubricants at Metallic Surfaces: Prediction of the Friction. , 2013, Journal of chemical theory and computation.

[42]  Rob Atkin,et al.  Adsorbed and near surface structure of ionic liquids at a solid interface. , 2013, Physical chemistry chemical physics : PCCP.

[43]  M. Tomitori,et al.  Tip cleaning and sharpening processes for noncontact atomic force microscope in ultrahigh vacuum , 1999 .

[44]  P. Malfreyt,et al.  2D or not 2D: structural and charge ordering at the solid-liquid interface of the 1-(2-hydroxyethyl)-3-methylimidazolium tetrafluoroborate ionic liquid. , 2012, Faraday discussions.

[45]  A. Faraone,et al.  The influence of a hierarchical porous carbon network on the coherent dynamics of a nanoconfined room temperature ionic liquid: A neutron spin echo and atomistic simulation investigation , 2014 .

[46]  H. Butt,et al.  Force measurements with the atomic force microscope: Technique, interpretation and applications , 2005 .

[47]  Xueping Gao,et al.  Well-Ordered Structure at Ionic Liquid/Rutile (110) Interface , 2007 .

[48]  R. Atkin,et al.  Structure and nanostructure in ionic liquids. , 2015, Chemical reviews.

[49]  L. M. Varela,et al.  Nanostructure-thermal conductivity relationships in protic ionic liquids. , 2014, The journal of physical chemistry. B.

[50]  Gebo Pan,et al.  2D phase transition of PF6 adlayers at the electrified ionic liquid/Au(111) interface , 2006 .

[51]  M. D. Del Pópolo,et al.  Mesophases in nearly 2D room-temperature ionic liquids. , 2009, The journal of physical chemistry. B.

[52]  R. Atkin,et al.  Effect of Cation Alkyl Chain Length and Anion Type on Protic Ionic Liquid Nanostructure , 2014 .

[53]  Tom Welton,et al.  Room-temperature ionic liquids: solvents for synthesis and catalysis. 2. , 1999, Chemical reviews.

[54]  N. V. Sastry,et al.  Viscosities and Densities for Heptane + 1-Pentanol, +1-Hexanol, +1-Heptanol, +1-Octanol, +1-Decanol, and +1-Dodecanol at 298.15 K and 308.15 K , 1996 .

[55]  R. Atkin,et al.  Amplitude-modulated atomic force microscopy reveals the near surface nanostructure of surfactant sponge (L(3)) and lamellar (L(α)) phases. , 2015, Langmuir : the ACS journal of surfaces and colloids.

[56]  R. Atkin,et al.  Ion structure controls ionic liquid near-surface and interfacial nanostructure , 2014, Chemical science.

[57]  M. Luppi,et al.  DFT Study of 1,3-Dimethylimidazolium Tetrafluoroborate on Al and Cu(111) Surfaces , 2011 .

[58]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.