A set of molecular models for alkali and halide ions in aqueous solution.

This work presents new molecular models for alkali and halide ions in aqueous solution. The force fields were parameterized with respect to the reduced liquid solution density at 293.15 K and 1 bar, considering all possible ion combinations simultaneously. The experimental target data are reproduced with a high accuracy over a wide range of salinity. The ion models predict structural properties of electrolyte solutions well, such as pair correlation functions and hydration numbers. The force fields provide good predictions of the properties studied here in combination with different models for water.

[1]  S. Varma,et al.  Coordination numbers of alkali metal ions in aqueous solutions. , 2006, Biophysical chemistry.

[2]  M. Klein,et al.  An ab initio study of water molecules in the bromide ion solvation shell , 2002 .

[3]  Alexander D. MacKerell,et al.  A polarizable model of water for molecular dynamics simulations of biomolecules , 2006 .

[4]  Hans Hasse,et al.  Molecular model for formic acid adjusted to vapor–liquid equilibria , 2007 .

[5]  W. L. Jorgensen,et al.  Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids , 1996 .

[6]  Hongbo Du,et al.  Effects of salt on the lower critical solution temperature of poly (N-isopropylacrylamide). , 2010, The journal of physical chemistry. B.

[7]  Thomas S. Hofer,et al.  “Structure Breaking” Effect of Hydrated Cs+ , 2004 .

[8]  P. Cremer,et al.  Effects of Hofmeister Anions on the LCST of PNIPAM as a Function of Molecular Weight. , 2007, The journal of physical chemistry. C, Nanomaterials and interfaces.

[9]  Yizhak Marcus,et al.  Ionic radii in aqueous solutions , 1983 .

[10]  J. Kirkwood,et al.  The Statistical Mechanical Theory of Solutions. I , 1951 .

[11]  Thomas S. Hofer,et al.  Structure‐breaking effects of solvated Rb(I) in dilute aqueous solution—An ab initio QM/MM MD approach , 2005, J. Comput. Chem..

[12]  Markus Christen,et al.  The GROMOS software for biomolecular simulation: GROMOS05 , 2005, J. Comput. Chem..

[13]  L. Dang Development of nonadditive intermolecular potentials using molecular dynamics: Solvation of Li+ and F− ions in polarizable water , 1992 .

[14]  R. L. Baldwin,et al.  How Hofmeister ion interactions affect protein stability. , 1996, Biophysical journal.

[15]  R. Good,et al.  New Combining Rule for Intermolecular Distances in Intermolecular Potential Functions , 1970 .

[16]  S. Weerasinghe,et al.  A Kirkwood-Buff derived force field for the simulation of aqueous guanidinium chloride solutions. , 2004, The Journal of chemical physics.

[17]  William L Jorgensen,et al.  Halide, Ammonium, and Alkali Metal Ion Parameters for Modeling Aqueous Solutions. , 2006, Journal of chemical theory and computation.

[18]  S. Engelsen,et al.  The Consistent Force Field. Part 4. An Optimized Set of Potential Energy Functions for Aliphatic and Alicyclic Ethers and Anomeric Carbon Atoms. , 1996 .

[19]  B. Rode,et al.  THE HYDRATION STRUCTURES OF F? AND CL?INVESTIGATED BY AB INITIO QM/MM MOLECULAR DYNAMICS SIMULATIONS , 2003 .

[20]  B. Rode,et al.  QM/MM MD simulations of iodide ion (I(-)) in aqueous solution: a delicate balance between ion-water and water-water H-bond interactions. , 2010, The journal of physical chemistry. A.

[21]  W. Wagner,et al.  The IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use , 2002 .

[22]  B. Randolf,et al.  Hydration of sodium(I) and potassium(I) revisited: a comparative QM/MM and QMCF MD simulation study of weakly hydrated ions. , 2009, The journal of physical chemistry. A.

[23]  J. Åqvist,et al.  Ion-water interaction potentials derived from free energy perturbation simulations , 1990 .

[24]  David E. Smith,et al.  Computer simulations of NaCl association in polarizable water , 1994 .

[25]  L. Dang,et al.  Mechanism and Thermodynamics of Ion Selectivity in Aqueous Solutions of 18-Crown-6 Ether: A Molecular Dynamics Study , 1995 .

[26]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[27]  S. Weerasinghe,et al.  A Kirkwood–Buff derived force field for sodium chloride in water , 2003 .

[28]  J. Rasaiah,et al.  Molecular Dynamics Simulation of Ion Mobility. 2. Alkali Metal and Halide Ions Using the SPC/E Model for Water at 25 °C† , 1996 .

[29]  Paul E. Smith,et al.  A Kirkwood-Buff Derived Force Field for Aqueous Alkali Halides. , 2011, Journal of chemical theory and computation.

[30]  Hans Hasse,et al.  ms2: A molecular simulation tool for thermodynamic properties , 2011, Comput. Phys. Commun..

[31]  A. Barnes,et al.  X-ray and neutron scattering studies of the hydration structure of alkali ions in concentrated aqueous solutions. , 2006, Biophysical chemistry.

[32]  V. Knecht,et al.  Kirkwood-Buff derived force field for alkali chlorides in simple point charge water. , 2010, The Journal of chemical physics.

[33]  Ken A Dill,et al.  How ions affect the structure of water. , 2002, Journal of the American Chemical Society.

[34]  H. A. Lorentz Ueber die Anwendung des Satzes vom Virial in der kinetischen Theorie der Gase , 1881 .

[35]  P. P. Ewald Die Berechnung optischer und elektrostatischer Gitterpotentiale , 1921 .

[36]  Maria M. Reif,et al.  Computation of methodology-independent single-ion solvation properties from molecular simulations. IV. Optimized Lennard-Jones interaction parameter sets for the alkali and halide ions in water. , 2011, The Journal of chemical physics.

[37]  Greg L. Hura,et al.  Development of an improved four-site water model for biomolecular simulations: TIP4P-Ew. , 2004, The Journal of chemical physics.

[38]  J. Rasaiah Equilibrium Properties of Ionic Solutions; The Primitive Model and its Modification for Aqueous Solutions of the Alkali Halides at 25°C , 1970 .

[39]  Dominik Horinek,et al.  Rational design of ion force fields based on thermodynamic solvation properties. , 2009, The Journal of chemical physics.

[40]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[41]  J. Rasaiah,et al.  MOLECULAR DYNAMICS SIMULATION OF IONIC MOBILITY. I: ALKALI METAL CATIONS IN WATER AT 25 C , 1994 .

[42]  J. Dzubiella,et al.  Ion specificity in α-helical folding kinetics. , 2010, The journal of physical chemistry. B.

[43]  Ming-Jing Hwang,et al.  Derivation of Class II Force Fields. 4. van der Waals Parameters of Alkali Metal Cations and Halide Anions , 1997 .

[44]  Hans Hasse,et al.  Prediction of self-diffusion coefficient and shear viscosity of water and its binary mixtures with methanol and ethanol by molecular simulation. , 2011, The Journal of chemical physics.

[45]  J. Rasaiah,et al.  Solvent Structure, Dynamics, and Ion Mobility in Aqueous Solutions at 25 °C , 1998 .

[46]  T. Straatsma,et al.  THE MISSING TERM IN EFFECTIVE PAIR POTENTIALS , 1987 .

[47]  P. Rossky,et al.  Molecular Dynamics Simulation of Electrolyte Solutions in Ambient and Supercritical Water. 1. Ion Solvation , 1996 .

[48]  Thomas E. Cheatham,et al.  Molecular Dynamics Simulations of the Dynamic and Energetic Properties of Alkali and Halide Ions Using Water-Model-Specific Ion Parameters , 2009, The journal of physical chemistry. B.

[49]  Hans Hasse,et al.  On the application of force fields for predicting a wide variety of properties: Ethylene oxide as an example , 2008 .

[50]  R. C. Weast CRC Handbook of Chemistry and Physics , 1973 .

[51]  H. Berendsen,et al.  Interaction Models for Water in Relation to Protein Hydration , 1981 .

[52]  J. Weeks,et al.  Accurate thermodynamics for short-ranged truncations of Coulomb interactions in site-site molecular models. , 2009, The Journal of chemical physics.

[53]  T. Cheatham,et al.  Determination of Alkali and Halide Monovalent Ion Parameters for Use in Explicitly Solvated Biomolecular Simulations , 2008, The journal of physical chemistry. B.