Minimal Reversible Deterministic Finite Automata

We study reversible deterministic finite automata (REV-DFAs), that are partial deterministic finite automata whose transition function induces an injective mapping on the state set for every letter of the input alphabet. We give a structural characterization of regular languages that can be accepted by REV-DFAs. This characterization is based on the absence of a forbidden pattern in the (minimal) deterministic state graph. Again with a forbidden pattern approach, we also show that the minimality of REV-DFAs among all equivalent REV-DFAs can be decided. Both forbidden pattern characterizations give rise to NL-complete decision algorithms. In fact, our techniques allow us to construct the minimal REV-DFA for a given minimal DFA. These considerations lead to asymptotic upper and lower bounds on the conversion from DFAs to REV-DFAs. Thus, almost all problems that concern uniqueness and the size of minimal REV-DFAs are solved.

[1]  Neil Immerman Nondeterministic Space is Closed Under Complementation , 1988, SIAM J. Comput..

[2]  Martin Kutrib Aspects of Reversibility for Classical Automata , 2014, Computing with New Resources.

[3]  Pierre-Cyrille Héam A Lower Bound For Reversible Automata , 2000, RAIRO Theor. Informatics Appl..

[4]  Jean-Éric Pin,et al.  On Reversible Automata , 1992, LATIN.

[5]  Holger Bock Axelsen Reversible Multi-head Finite Automata Characterize Reversible Logarithmic Space , 2012, LATA.

[6]  Martin Kutrib,et al.  Reversible Queue Automata , 2016, Fundam. Informaticae.

[7]  Charles H. Bennett,et al.  Logical reversibility of computation , 1973 .

[8]  Markus Holzer,et al.  Minimal and Hyper-Minimal Biautomata - (Extended Abstract) , 2014, Developments in Language Theory.

[9]  Damián López,et al.  On the efficient construction of quasi-reversible automata for reversible languages , 2008, Inf. Process. Lett..

[10]  Janos Simon,et al.  Space-Bounded Hierarchies and Probabilistic Computations , 1984, J. Comput. Syst. Sci..

[11]  Martin Kutrib,et al.  Reversible pushdown automata , 2010, J. Comput. Syst. Sci..

[12]  Róbert Szelepcsényi,et al.  The method of forced enumeration for nondeterministic automata , 1988, Acta Informatica.

[13]  Kenichi Morita A Deterministic Two-Way Multi-head Finite Automaton Can Be Converted into a Reversible One with the Same Number of Heads , 2012, RC.

[14]  Michael A. Harrison,et al.  Introduction to formal language theory , 1978 .

[15]  Kenichi Morita,et al.  Two-Way Reversible Multi-Head Finite Automata , 2011, Fundam. Informaticae.

[16]  Dana Angluin,et al.  Inference of Reversible Languages , 1982, JACM.

[17]  Martin Kutrib,et al.  One-way reversible multi-head finite automata , 2012, Theor. Comput. Sci..

[18]  Sylvain Lombardy On the Construction of Reversible Automata for Reversible Languages , 2002, ICALP.

[19]  Satoshi Kobayashi,et al.  Learning Approximately Regular Languages with Reversible Languages , 1997, Theor. Comput. Sci..

[20]  Kenichi Morita,et al.  A 1-Tape 2-Symbol Reversible Turing Machine , 1989 .

[21]  Robert Glück,et al.  A Simple and Efficient Universal Reversible Turing Machine , 2011, LATA.

[22]  R. Landauer,et al.  Irreversibility and heat generation in the computing process , 1961, IBM J. Res. Dev..

[23]  Dung T. Huynh,et al.  The Parallel Complexity of Finite-State Automata Problems , 1992, Inf. Comput..