Assessing the quality of absolute hydration free energies among CHARMM‐compatible ligand parameterization schemes

Multipurpose atom‐typer for CHARMM (MATCH), an atom‐typing toolset for molecular mechanics force fields, was recently developed in our laboratory. Here, we assess the ability of MATCH‐generated parameters and partial atomic charges to reproduce experimental absolute hydration free energies for a series of 457 small neutral molecules in GBMV2, Generalized Born with a smooth SWitching (GBSW), and fast analytical continuum treatment of solvation (FACTS) implicit solvent models. The quality of hydration free energies associated with small molecule parameters obtained from ParamChem, SwissParam, and Antechamber are compared. Given optimized surface tension coefficients for scaling the surface area term in the nonpolar contribution, these automated parameterization schemes with GBMV2 and GBSW demonstrate reasonable agreement with experimental hydration free energies (average unsigned errors of 0.9–1.5 kcal/mol and R2 of 0.63–0.87). GBMV2 and GBSW consistently provide slightly more accurate estimates than FACTS, whereas Antechamber parameters yield marginally more accurate estimates than the current generation of MATCH, ParamChem, and SwissParam parameterization strategies. Modeling with MATCH libraries that are derived from different CHARMM topology and parameter files highlights the importance of having sufficient coverage of chemical space within the underlying databases of these automated schemes and the benefit of targeting specific functional groups for parameterization efforts to maximize both the breadth and the depth of the parameterized space. © 2013 Wiley Periodicals, Inc.

[1]  Charles H. Bennett,et al.  Efficient estimation of free energy differences from Monte Carlo data , 1976 .

[2]  David L Mobley,et al.  Small molecule hydration free energies in explicit solvent: An extensive test of fixed-charge atomistic simulations. , 2009, Journal of chemical theory and computation.

[3]  M. B. Pinto,et al.  Optimized δ expansion for relativistic nuclear models , 1997, nucl-th/9709049.

[4]  Jianpeng Ma,et al.  CHARMM: The biomolecular simulation program , 2009, J. Comput. Chem..

[5]  Alexander D. MacKerell,et al.  CHARMM general force field: A force field for drug‐like molecules compatible with the CHARMM all‐atom additive biological force fields , 2009, J. Comput. Chem..

[6]  Michael R. Shirts,et al.  Statistically optimal analysis of samples from multiple equilibrium states. , 2008, The Journal of chemical physics.

[7]  W. C. Still,et al.  Semianalytical treatment of solvation for molecular mechanics and dynamics , 1990 .

[8]  C. Brooks,et al.  Novel generalized Born methods , 2002 .

[9]  David L Mobley,et al.  Treating entropy and conformational changes in implicit solvent simulations of small molecules. , 2008, The journal of physical chemistry. B.

[10]  Charles L. Brooks,et al.  New analytic approximation to the standard molecular volume definition and its application to generalized Born calculations , 2003, J. Comput. Chem..

[11]  Araz Jakalian,et al.  Fast, efficient generation of high‐quality atomic charges. AM1‐BCC model: I. Method , 2000 .

[12]  David L Mobley,et al.  Comparison of charge models for fixed-charge force fields: small-molecule hydration free energies in explicit solvent. , 2007, The journal of physical chemistry. B.

[13]  Christopher I. Bayly,et al.  Fast, efficient generation of high‐quality atomic charges. AM1‐BCC model: II. Parameterization and validation , 2002, J. Comput. Chem..

[14]  T. Halgren MMFF VII. Characterization of MMFF94, MMFF94s, and other widely available force fields for conformational energies and for intermolecular‐interaction energies and geometries , 1999, Journal of computational chemistry.

[15]  T. Halgren Merck molecular force field. II. MMFF94 van der Waals and electrostatic parameters for intermolecular interactions , 1996 .

[16]  Benoît Roux,et al.  Computations of Absolute Solvation Free Energies of Small Molecules Using Explicit and Implicit Solvent Model. , 2009, Journal of chemical theory and computation.

[17]  Charles L. Brooks,et al.  Generalized born model with a simple smoothing function , 2003, J. Comput. Chem..

[18]  David L Mobley,et al.  Predicting small-molecule solvation free energies: an informal blind test for computational chemistry. , 2008, Journal of medicinal chemistry.

[19]  Urs Haberthür,et al.  FACTS: Fast analytical continuum treatment of solvation , 2008, J. Comput. Chem..

[20]  C. Brooks,et al.  Recent advances in the development and application of implicit solvent models in biomolecule simulations. , 2004, Current opinion in structural biology.

[21]  J. Guthrie,et al.  A blind challenge for computational solvation free energies: introduction and overview. , 2009, The journal of physical chemistry. B.

[22]  Charles L. Brooks,et al.  MATCH: An atom‐typing toolset for molecular mechanics force fields , 2012, J. Comput. Chem..

[23]  Charles L. Brooks,et al.  Surveying implicit solvent models for estimating small molecule absolute hydration free energies , 2011, J. Comput. Chem..

[24]  M. Born Volumen und Hydratationswärme der Ionen , 1920 .

[25]  H. Berendsen,et al.  ALGORITHMS FOR MACROMOLECULAR DYNAMICS AND CONSTRAINT DYNAMICS , 1977 .

[26]  Norbert Haider,et al.  Functionality Pattern Matching as an Efficient Complementary Structure/Reaction Search Tool: an Open-Source Approach , 2010, Molecules.

[27]  Junmei Wang,et al.  Development and testing of a general amber force field , 2004, J. Comput. Chem..

[28]  W. Sherman,et al.  Prediction of Absolute Solvation Free Energies using Molecular Dynamics Free Energy Perturbation and the OPLS Force Field. , 2010, Journal of chemical theory and computation.

[29]  Philipp Werner,et al.  Efficient evaluation of the effective dielectric function of a macromolecule in aqueous solution , 2003, J. Comput. Chem..

[30]  Irwin D Kuntz,et al.  Estimation of Absolute Free Energies of Hydration Using Continuum Methods: Accuracy of Partial Charge Models and Optimization of Nonpolar Contributions , 2022 .

[31]  M. Karplus,et al.  CHARMM: A program for macromolecular energy, minimization, and dynamics calculations , 1983 .