The electric field integral equation on Lipschitz screens: definitions and numerical approximation

Summary. We use the integral equation approach to study electromagnetic scattering by perfectly conducting (non-orientable) Lipschitz screens. The well-posedness of the electric field integral equation is derived. The Galerkin method for this problem is analysed in a general setting and optimal error bounds are proved for conforming finite elements in natural norms.

[1]  H. Triebel Interpolation Theory, Function Spaces, Differential Operators , 1978 .

[2]  P. Raviart,et al.  A mixed finite element method for 2-nd order elliptic problems , 1977 .

[3]  Claus Müller,et al.  Foundations of the mathematical theory of electromagnetic waves , 1969 .

[4]  H. Whitney Geometric Integration Theory , 1957 .

[5]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[6]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[7]  Jun Zou,et al.  Fully discrete finite element approaches for time-dependent Maxwell's equations , 1999, Numerische Mathematik.

[8]  C. Schwab,et al.  Boundary element methods for Maxwell's equations on non-smooth domains , 2002, Numerische Mathematik.

[9]  Toufic Abboud Etude mathématique et numérique de quelques problèmes de diffraction d'ondes électromagnétiques , 1991 .

[10]  Luc Paquet,et al.  Problèmes mixtes pour le système de Maxwell , 1982 .

[11]  Leszek Demkowicz,et al.  Asymptotic convergence in finite and boundary element methods: part 1: theoretical results , 1994 .

[12]  H. Schubert,et al.  O. D. Kellogg, Foundations of Potential Theory. (Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, Band 31). X + 384 S. m. 30 Fig. Berlin/Heidelberg/New York 1967. Springer‐Verlag. Preis geb. DM 32,– , 1969 .

[13]  H. Fédérer Geometric Measure Theory , 1969 .

[14]  François Dubois,et al.  Discrete vector potential representation of a divergence-free vector field in three dimensional domains: numerical analysis of a model problem , 1990 .

[15]  Jean-Claude Nédélec,et al.  Des préconditionneurs pour la résolution numérique des équations intégrales de frontière de l'électromagnétisme , 2000 .

[16]  A. Bendali,et al.  Numerical analysis of the exterior boundary value problem for the time-harmonic Maxwell equations by a boundary finite element method. I - The continuous problem. II - The discrete problem , 1984 .

[17]  Ralf Hiptmair,et al.  Boundary Element Methods for Maxwell Transmission Problems in Lipschitz Domains , 2003, Numerische Mathematik.

[18]  Carlos E. Kenig,et al.  The Inhomogeneous Dirichlet Problem in Lipschitz Domains , 1995 .

[19]  Ralf Hiptmair,et al.  Natural BEM for the electric field integral equation on polyhedra , 2001 .

[20]  Patrick Ciarlet,et al.  On traces for functional spaces related to Maxwell's equations Part I: An integration by parts formula in Lipschitz polyhedra , 2001 .

[21]  Martin Costabel,et al.  Boundary Integral Operators on Lipschitz Domains: Elementary Results , 1988 .

[22]  C. Baiocchi Un teorema di interpolazione; applicazioni ai problemi ai limiti per le equazioni differenziali a derivate parziali , 1966 .

[23]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[24]  Dorina Mitrea,et al.  Layer potentials, the Hodge Laplacian, and global boundary problems in nonsmooth Riemannian manifolds , 2001 .

[25]  V. Girault,et al.  Vector potentials in three-dimensional non-smooth domains , 1998 .

[26]  M. Costabel,et al.  Singularities of Electromagnetic Fields¶in Polyhedral Domains , 2000 .

[27]  J. Lions,et al.  Problèmes aux limites non homogènes et applications , 1968 .

[28]  J. Nédélec Mixed finite elements in ℝ3 , 1980 .

[29]  P. Grisvard Singularities in Boundary Value Problems , 1992 .

[30]  L. D. Marini,et al.  Two families of mixed finite elements for second order elliptic problems , 1985 .

[31]  Jean-Claude Nédélec,et al.  Computation of Eddy Currents on a Surface in $R^3$ by Finite Element Methods , 1978 .

[32]  J. Nédélec Acoustic and Electromagnetic Equations : Integral Representations for Harmonic Problems , 2001 .

[33]  Patrick Ciarlet,et al.  On traces for functional spaces related to Maxwell's equations Part II: Hodge decompositions on the boundary of Lipschitz polyhedra and applications , 2001 .

[34]  A. Buffa,et al.  On traces for H(curl,Ω) in Lipschitz domains , 2002 .

[35]  G. Verchota Layer potentials and regularity for the Dirichlet problem for Laplace's equation in Lipschitz domains , 1984 .

[36]  Ernst P. Stephan,et al.  Boundary integral equations for screen problems in IR3 , 1987 .

[37]  J. Nédélec A new family of mixed finite elements in ℝ3 , 1986 .

[38]  Stefan Hildebrandt,et al.  Constructive proofs of representation theorems in separable Hilbert space , 1964 .

[39]  M. Cessenat MATHEMATICAL METHODS IN ELECTROMAGNETISM: LINEAR THEORY AND APPLICATIONS , 1996 .