Parallel One-Shot Lagrange-Newton-Krylov-Schwarz Algorithms for Shape Optimization of Steady Incompressible Flows

We propose and study a new parallel one-shot Lagrange--Newton--Krylov--Schwarz (LNKSz) algorithm for shape optimization problems constrained by steady incompressible Navier--Stokes equations discretized by finite element methods on unstructured moving meshes. Most existing algorithms for shape optimization problems iteratively solve the three components of the optimality system: the state equations for the constraints, the adjoint equations for the Lagrange multipliers, and the design equations for the shape parameters. Such approaches are relatively easy to implement, but generally are not easy to converge as they are basically nonlinear Gauss--Seidel algorithms with three large blocks. In this paper, we introduce a fully coupled, or the so-called one-shot, approach which solves the three components simultaneously. First, we introduce a moving mesh finite element method for the shape optimization problems in which the mesh equations are implicitly coupled with the optimization problems. Second, we introd...

[1]  M. Heinkenschloss,et al.  Shape Optimization in Stationary Blood Flow : A Numerical Study of Non-Newtonian Effects , 2004 .

[2]  Max Gunzburger,et al.  Perspectives in flow control and optimization , 1987 .

[3]  Homer F. Walker,et al.  Choosing the Forcing Terms in an Inexact Newton Method , 1996, SIAM J. Sci. Comput..

[4]  J. Szmelter Incompressible flow and the finite element method , 2001 .

[5]  G. Bergeles,et al.  Notes on Numerical Fluid Mechanics and Multidisciplinary Design , 2012 .

[6]  V. Komkov Optimal shape design for elliptic systems , 1986 .

[7]  Volker Schulz,et al.  One-Shot Methods for Aerodynamic Shape Optimization , 2009 .

[8]  William Gropp,et al.  Parallel Newton-Krylov-Schwarz Algorithms for the Transonic Full Potential Equation , 1996, SIAM J. Sci. Comput..

[9]  Vijay P. Kumar,et al.  Analyzing Scalability of Parallel Algorithms and Architectures , 1994, J. Parallel Distributed Comput..

[10]  Svetozara Petrova,et al.  Applications of one-shot methods in PDEs constrained shape optimization , 2009, Math. Comput. Simul..

[11]  David E. Keyes,et al.  Parallel Algorithms for PDE-Constrained Optimization , 2006, Parallel Processing for Scientific Computing.

[12]  George Biros,et al.  Parallel Lagrange-Newton-Krylov-Schur Methods for PDE-Constrained Optimization. Part I: The Krylov-Schur Solver , 2005, SIAM J. Sci. Comput..

[13]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[14]  M. Heinkenschloss,et al.  Shape optimization in unsteady blood flow: A numerical study of non-Newtonian effects , 2005, Computer methods in biomechanics and biomedical engineering.

[15]  Harbir Antil,et al.  Domain decomposition and balanced truncation model reduction for shape optimization of the Stokes system , 2011, Optim. Methods Softw..

[16]  Raino A. E. Mäkinen,et al.  Introduction to shape optimization - theory, approximation, and computation , 2003, Advances in design and control.

[17]  Harbir Antil,et al.  Path-following primal-dual interior-point methods for shape optimization of stationary flow problems , 2007, J. Num. Math..

[18]  Manfred Laumen,et al.  A Comparison of Numerical Methods for Optimal Shape Design Problems , 1996, Universität Trier, Mathematik/Informatik, Forschungsbericht.

[19]  Xiao-Chuan Cai,et al.  Parallel Multilevel Restricted Schwarz Preconditioners with Pollution Removing for PDE-Constrained Optimization , 2007, SIAM J. Sci. Comput..

[20]  Maatoug Hassine,et al.  Optimal shape design for fluid flow using topological perturbation technique , 2009 .

[21]  Gianluigi Rozza,et al.  A Mathematical Approach in the Design of Arterial Bypass Using Unsteady Stokes Equations , 2006, J. Sci. Comput..

[22]  James F. Antaki,et al.  Computational Strategies For Shape Optimization Of Time-Dependent Navier-Stokes Flows , 1997 .

[23]  George Biros,et al.  Parallel Lagrange-Newton-Krylov-Schur Methods for PDE-Constrained Optimization. Part II: The Lagrange-Newton Solver and Its Application to Optimal Control of Steady Viscous Flows , 2005, SIAM J. Sci. Comput..

[24]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[25]  Xiao-Chuan Cai,et al.  Scalable parallel methods for monolithic coupling in fluid-structure interaction with application to blood flow modeling , 2010, J. Comput. Phys..

[26]  Max Gunzburger,et al.  Existence of an Optimal Solution of a Shape Control Problem for the Stationary Navier--Stokes Equations , 1998 .

[27]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[28]  H. M. Bücker,et al.  Sensitivity of optimal shapes of artificial grafts with respect to flow parameters , 2010 .

[29]  Qian Wang,et al.  Review of formulations for structural and mechanical system optimization , 2005 .

[30]  J. Zolésio,et al.  Introduction to shape optimization : shape sensitivity analysis , 1992 .

[31]  Max D. Gunzburger,et al.  On a shape control problem for the stationary Navier-Stokes equations , 2000 .

[32]  D. Keyes,et al.  Jacobian-free Newton-Krylov methods: a survey of approaches and applications , 2004 .

[33]  G. Rozza,et al.  Parametric free-form shape design with PDE models and reduced basis method , 2010 .

[34]  Eyal Arian,et al.  Shape Optimization in One Shot , 1995 .

[35]  A. Quarteroni,et al.  OPTIMAL CONTROL AND SHAPE OPTIMIZATION OF AORTO-CORONARIC BYPASS ANASTOMOSES , 2003 .

[36]  Paul T. Boggs,et al.  Sequential Quadratic Programming , 1995, Acta Numerica.

[37]  Robert D. Russell,et al.  Adaptive Moving Mesh Methods , 2010 .

[38]  Gianluigi Rozza,et al.  Shape Design in Aorto-Coronaric Bypass Anastomoses Using Perturbation Theory , 2006, SIAM J. Numer. Anal..

[39]  Natalia Alexandrov,et al.  Multidisciplinary design optimization : state of the art , 1997 .

[40]  Harbir Antil,et al.  Optimization and model reduction of time dependent PDE-constrained optimization problems: Applications to surface acoustic wave driven microfluidic biochips , 2009 .

[41]  Subhendu Bikash Hazra Multigrid One-shot Method for Aerodynamic Shape Optimization , 2008, SIAM J. Sci. Comput..

[42]  Homer F. Walker,et al.  Globally Convergent Inexact Newton Methods , 1994, SIAM J. Optim..

[43]  Andrea Toselli,et al.  Domain decomposition methods : algorithms and theory , 2005 .

[44]  Xiao-Chuan Cai,et al.  Parallel Full Space SQP Lagrange-Newton-Krylov-Schwarz Algorithms for PDE-Constrained Optimization Problems , 2005, SIAM J. Sci. Comput..

[45]  D. Zingg,et al.  Mesh Movement for a Discrete-Adjoint Newton-Krylov Algorithm for Aerodynamic Optimization , 2007 .

[46]  Olivier Pironneau,et al.  Applied Shape Optimization for Fluids, Second Edition , 2009, Numerical mathematics and scientific computation.