Malware Detection System by Payload Analysis of Network Traffic
暂无分享,去创建一个
This paper presents a system for detecting intrusions when analyzing the network traffic payload looking for malware evidences. The system implements the detection algorithm as a Snort preprocessor component. Since they work together, a highly effective system against known attacks has been achieved (based on Snort rules) and a highly effective system against unknown threats (which was the main aim of the designed system). As the majority of such systems, the proposal consists of two phases: a training phase and a detection phase. During the training phase a statistical model of the legitimate network usage is created through Bloom Filters and N-grams techniques. Subsequently, the results obtained by analyzing a dataset of attacks are compared with such model. This will allow a set of rules to be developed which will be able to determine whether the packets payloads contain malware. In the detection phase, the traffic to analyze is compared with the model created in the training phase and the results obtained when applying rules. The performed experiments showed really satisfactory results, with 100% malware detection and just 0.15% false positives.