THE WFC3 INFRARED SPECTROSCOPIC PARALLEL (WISP) SURVEY

We present the WFC3 Infrared Spectroscopic Parallel (WISP) Survey. WISP is obtaining slitless, near-infrared grism spectroscopy of ~90 independent, high-latitude fields by observing in the pure-parallel mode with the Wide Field Camera Three on the Hubble Space Telescope for a total of ~250 orbits. Spectra are obtained with the G_(102) (λ = 0.8–1.17 μm, R ~ 210) and G_(141) grisms (λ = 1.11–1.67 μm, R ~ 130), together with direct imaging in the J and H bands (F110W and F140W, respectively). In the present paper, we present the first results from 19 WISP fields, covering approximately 63 arcmin^2. For typical exposure times (~6400 s in G_(102) and ~2700 s in G_(141)), we reach 5σ detection limits for emission lines of f ~ 5 × 10^(−17) erg s^(−1) cm^(−2) for compact objects. Typical direct imaging 5σ limits are 26.3 and 26.1 mag. (AB) in F110W and F140W, respectively. Restricting ourselves to the lines measured with the highest confidence, we present a list of 328 emission lines, in 229 objects, in a redshift range 0.3 < z < 3. The single-line emitters are likely to be a mix of Hα and [O_III]5007,4959 A, with Hα predominating. The overall surface density of high-confidence emission-line objects in our sample is approximately 4 per arcmin^2. These first fields show high equivalent width sources, active galactic nucleus, and post-starburst galaxies. The median observed star formation rate (SFR) of our Hα-selected sample is 4M_⊙ yr^(−1). At intermediate redshifts, we detect emission lines in galaxies as faint as H_(140) ~ 25, or M_R < −19, and are sensitive to SFRs down to less than 1M_⊙ yr^(−1). The slitless grisms on WFC3 provide a unique opportunity to study the spectral properties of galaxies much fainter than L^* at the peak of the galaxy assembly epoch.

[1]  A. Connolly,et al.  Star Formation in Galaxies between Redshifts of 0.7 and 1.8 , 2000 .

[2]  Emission-Line Galaxies from the NICMOS/Hubble Space Telescope Grism Parallel Survey , 1999, astro-ph/9902347.

[3]  D. Tucker,et al.  REST-FRAME OPTICAL SPECTRA OF THREE STRONGLY LENSED GALAXIES AT z ∼ 2 , 2009, 0906.2197.

[4]  The star formation rate at redshift one: Hα spectroscopy with CIRPASS , 2006, astro-ph/0604584.

[5]  Max Pettini,et al.  Optical Selection of Star-forming Galaxies at Redshifts 1 < z < 3 , 2004, astro-ph/0401445.

[6]  Takashi Hattori,et al.  A galaxy at a redshift z = 6.96 , 2006, Nature.

[7]  H.-W. Chen,et al.  ApJ in press Preprint typeset using L ATEX style emulateapj v. 9/08/03 THE GEMINI DEEP DEEP SURVEY. VII. THE REDSHIFT EVOLUTION OF THE MASS-METALLICITY RELATION 1,2 , 2005 .

[8]  J. Zamorano,et al.  Observations of a complete sample of H $_{\bf\alpha}$ emission-line galaxies. Long-slit spectroscopy of galaxies in UCM lists 1 and 2 , 1996 .

[9]  M. Malkan,et al.  A Narrowband Imaging Search for [O III] Emission from Galaxies at z > 3 , 1998, astro-ph/9810171.

[10]  P. McCarthy,et al.  Extremely Red Objects from the Hubble Space Telescope NICMOS Parallel Imaging Survey , 2000 .

[11]  M. Giavalisco,et al.  The Rest-Frame Optical Properties of z ≃ 3 Galaxies , 2001, astro-ph/0107324.

[12]  J. Rhoads,et al.  Optical-to-Mid-Infrared Observations of Lyα Galaxies at z ≈ 5 in the Hubble Ultra Deep Field: A Young and Low-Mass Population , 2007 .

[13]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[14]  Physical properties of two low-luminosity z 1.9 galaxies behind the lensing cluster AC 114 ⋆ , 2002, astro-ph/0210547.

[15]  M. Malkan,et al.  The Bright Ages Survey. II. Evolution of Luminosity, Dust Extinction, and Star Formation from z = 0.5 to z = 2.5 , 2006 .

[16]  The End of the Reionization Epoch Probed by Lyα Emitters at z = 6.5 in the Subaru Deep Field* ** , 2006, astro-ph/0604149.

[17]  P. McCarthy,et al.  GLOBAL STAR FORMATION RATE DENSITY OVER 0.7 < z < 1.9 , 2009, 0902.0736.

[18]  An Overdensity of Galaxies at z = 5.9 ? 0.2 in the Hubble Ultra Deep Field Confirmed Using the ACS Grism , 2005, astro-ph/0501478.

[19]  E. Gawiser,et al.  Accepted for publication in ApJ Preprint typeset using L ATEX style emulateapj v. 10/09/06 A NEAR-INFRARED SPECTROSCOPIC SURVEY OF K-SELECTED GALAXIES AT z ∼ 2.3: REDSHIFTS AND IMPLICATIONS FOR BROADBAND PHOTOMETRIC STUDIES 1,2 , 2022 .

[20]  J. Walsh,et al.  EMISSION-LINE GALAXIES FROM THE PEARS HUBBLE ULTRA DEEP FIELD: A 2D DETECTION METHOD AND FIRST RESULTS , 2008, 0802.2912.

[21]  Max Pettini Alice E. Shapley Charles C. Steidel Jean-G Giavalisco The Rest-Frame Optical Spectra of Lyman Break Galaxies: Star Formation, Extinction, Abundances, and Kinematics* , 2001 .

[22]  A. Cimatti,et al.  Multiwavelength Study of Massive Galaxies at z~2. I. Star Formation and Galaxy Growth , 2007, 0705.2831.

[23]  S. E. Persson,et al.  The Las Campanas Infrared Survey. IV. The Photometric Redshift Survey and the Rest-Frame R-Band Galaxy Luminosity Function at 0.5 ≤ z ≤ 1.5 , 2002, astro-ph/0212147.

[24]  H. Spinrad,et al.  The Hubble Space Telescope ACS Grism Parallel Survey. II. First Results and a Catalog of Faint Emission-Line Galaxies at z ≤ 1.6 , 2005, astro-ph/0503592.

[25]  L. Cowie,et al.  DEEP SPECTROSCOPY OF ULTRA-STRONG EMISSION-LINE GALAXIES , 2009, 0902.0336.

[26]  A. M. Hopkins,et al.  On the Evolution of Star-forming Galaxies , 2004, astro-ph/0407170.

[27]  R. S. Ellis,et al.  The Las Campanas Infrared Survey — V. Keck spectroscopy of a large sample of extremely red objects , 2005, astro-ph/0505119.

[28]  A. Coil,et al.  Chemical Abundances of DEEP2 Star-forming Galaxies at z~1.0-1.5 , 2005, astro-ph/0509102.

[29]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[30]  A. Cimatti,et al.  Passively Evolving Early-Type Galaxies at 1.4 ≲ z ≲ 2.5 in the Hubble Ultra Deep Field , 2005, astro-ph/0503102.

[31]  Patrick J. McCarthy,et al.  The Gemini Deep Deep Survey: I. Introduction to the Survey, Catalogs and Composite Spectra , 2004, astro-ph/0402436.

[32]  S. Arribas,et al.  The 2002 HST Calibration Workshop, Hubble after the installation of the ACS and the NICMOS cooling system : proceedings of a workshop held at the Space Telescope Science Institute, Baltimore, Maryland, October 17 and 18, 2002 , 2002 .

[33]  I. Hook,et al.  Evolved Galaxies at z > 1.5 from the Gemini Deep Deep Survey: The Formation Epoch of Massive Stellar Systems , 2004, astro-ph/0408367.

[34]  Star formation in emission-line galaxies between redshifts of 0.8 and 1.6 , 2002, astro-ph/0208551.

[35]  STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.

[36]  A. Szalay,et al.  Galaxy Luminosity Functions to z~1 from DEEP2 and COMBO-17: Implications for Red Galaxy Formation , 2005, astro-ph/0506044.

[37]  Christopher Portier,et al.  Risk factors for childhood leukaemia. Discussion and summary. , 2008, Radiation protection dosimetry.

[38]  Old galaxies in the young Universe , 2004, Nature.

[39]  Oxford,et al.  HiZELS:a high-redshift survey of Hα emitters - II. the nature of star-forming galaxies at z = 0.84 , 2009, 0901.4114.

[40]  L. Moustakas,et al.  THE STRUCTURE AND STAR FORMATION HISTORY OF EARLY-TYPE GALAXIES IN THE UDF / GRAPES SURVEY , 2005 .

[41]  AMAZE - I. The evolution of the mass–metallicity relation at z $>$ 3 , 2008, 0806.2410.

[42]  J. Rhodes,et al.  Emission-Line Galaxies in the Space Telescope Imaging Spectrograph Parallel Survey. I. Observations and Data Analysis , 2002, astro-ph/0212576.

[43]  A redshift z≈5.4 lyα emitting galaxy with linear morphology in the GRAPES/Hubble ultra deep field , 2004, astro-ph/0408031.

[44]  S. J. Lilly,et al.  The Canada-France Redshift Survey. II. Spectroscopic Program: Data for the 0000-00 and 1000+25 Fields , 1995 .

[45]  E. Bell,et al.  The Optical and Near-Infrared Properties of Galaxies. I. Luminosity and Stellar Mass Functions , 2003, astro-ph/0302543.

[46]  Mamoru Doi,et al.  Lyα Emitters at z = 5.7 in the Subaru Deep Field , 2006, astro-ph/0602614.

[47]  A. Pasquali,et al.  Extracting ACS Slitless Spectra with aXe , 2001 .

[48]  J. Walsh,et al.  The Hubble Legacy Archive NICMOS grism data , 2008, 0809.2465.

[49]  Anna Pasquali,et al.  The Slitless Spectroscopy Data Extraction Software aXe , 2008, 0812.1434.

[50]  J. Walsh,et al.  EMISSION-LINE GALAXIES FROM THE HUBBLE SPACE TELESCOPE PROBING EVOLUTION AND REIONIZATION SPECTROSCOPICALLY (PEARS) GRISM SURVEY. I. THE SOUTH FIELDS , 2009, 0907.2254.

[51]  H. Ferguson,et al.  Morphology and Evolution of Emission-Line Galaxies in the Hubble Ultra Deep Field , 2005, astro-ph/0509551.

[52]  N. Pirzkal,et al.  The STIS Parallel Survey: Introduction and First Results , 1997 .

[53]  M. Malkan,et al.  A Young Cluster of Galaxies at z = 2.5 , 1996 .

[54]  P. Hewett,et al.  On near-infrared Hα searches for high-redshift galaxies⋆ , 1995, astro-ph/9501026.

[55]  N. Pirzkal,et al.  GRAPES, Grism Spectroscopy of the Hubble Ultra Deep Field: Description and Data Reduction , 2004, astro-ph/0403458.

[56]  L. Cowie,et al.  Mapping Extremely Low Metallicity Galaxies to Redshift One , 2007 .

[57]  Max Pettini,et al.  The Mass-Metallicity Relation at z≳2 , 2006, astro-ph/0602473.

[58]  G. Brammer,et al.  HUBBLE SPACE TELESCOPE WFC3 GRISM SPECTROSCOPY AND IMAGING OF A GROWING COMPACT GALAXY AT z = 1.9 , 2010, 1003.3446.

[59]  C. Lintott,et al.  Galaxy Zoo Green Peas: discovery of a class of compact extremely star-forming galaxies , 2009, 0907.4155.