Embedding defaults into terminological knowledge representation formalisms

We consider the problem of integrating Reiter's default logic into terminological representation systems. It turns out that such an integration is less straightforward than we expected, considering the fact that the terminological language is a decidable sublanguage of first-order logic. Semantically, one has the unpleasant effect that the consequences of a terminological default theory may be rather unintuitive, and may even vary with the syntactic structure of equivalent concept expressions. This is due to the unsatisfactory treatment of open defaults via Skolemization in Reiter's semantics. On the algorithmic side, we show that this treatment may lead to an undecidable default consequence relation, even though our base language is decidable, and we have only finitely many (open) defaults. Because of these problems, we then consider a restricted semantics for open defaults in our terminological default theories: default rules are applied only to individuals that are explicitly present in the knowledge base. In this semantics it is possible to compute all extensions of a finite terminological default theory, which means that this type of default reasoning is decidable. We describe an algorithm for computing extensions and show how the inference procedures of terminological systems can be modified to give optimal support to this algorithm.

[1]  Raymond Reiter,et al.  A Logic for Default Reasoning , 1987, Artif. Intell..

[2]  Drew McDermott,et al.  Non-Monotonic Logic I , 1987, Artif. Intell..

[3]  Kurt Konolige,et al.  Computing the Extensions of Autoepistemic and Default Logics with a Truth Maintenance System , 1990, AAAI.

[4]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[5]  Peter F. Patel-Schneider,et al.  Living wiht Classic: When and How to Use a KL-ONE-Like Language , 1991, Principles of Semantic Networks.

[6]  John McCarthy,et al.  Circumscription - A Form of Non-Monotonic Reasoning , 1980, Artif. Intell..

[7]  Camilla Schwind,et al.  A Tableau-Based Characterisation for Default Logic , 1991, ECSQARU.

[8]  Jon Doyle,et al.  A Truth Maintenance System , 1979, Artif. Intell..

[9]  Alfred Kobsa,et al.  Utilizing Knowledge: The Components of the SB-ONE Knowledge Representation Workbench , 1991, Principles of Semantic Networks.

[10]  W. Nutt,et al.  Subsumption algorithms for concept languages , 1990 .

[11]  Karl Schlechta,et al.  A Semantics for Open Normal Defaults via a Modified Preferential Approach , 1993, ECSQARU.

[12]  Daniela Berardi Statement of interest , 2002, Description Logics.

[13]  Franz Baader,et al.  How to Prefer More Specific Defaults in Terminological Default Logic , 1993, IJCAI.

[14]  Georg Gottlob,et al.  Complexity Results for Nonmonotonic Logics , 1992, J. Log. Comput..

[15]  Raymond Reiter,et al.  A Theory of Diagnosis from First Principles , 1986, Artif. Intell..

[16]  Emil L. Post Recursive Unsolvability of a problem of Thue , 1947, Journal of Symbolic Logic.

[17]  Ron Rymon,et al.  Search through Systematic Set Enumeration , 1992, KR.

[18]  Vladimir Lifschitz,et al.  On Open Defaults , 1990 .

[19]  Gert Smolka,et al.  Attributive Concept Descriptions with Complements , 1991, Artif. Intell..

[20]  Ronald J. Brachman,et al.  An Overview of the KL-ONE Knowledge Representation System , 1985, Cogn. Sci..

[21]  Bernhard Nebel,et al.  Attribute Description Formalisms ... and the Rest of the World , 1991, Text Understanding in LILOG.

[22]  Ronald J. Brachman,et al.  An overview of the KL-ONE Knowledge Representation System , 1985 .

[23]  Bernhard Hollunder Hybrid Inferences in KL-ONE-Based Knowledge Representation Systems , 1990, GWAI.

[24]  David Poole Variables in Hypotheses , 1987, IJCAI.

[25]  Bart Selman,et al.  Hard Problems for Simple Default Logics , 1989, Artif. Intell..

[26]  Hector J. Levesque,et al.  Hard problems for simple default logics , 1992 .

[27]  Franz Baader,et al.  A Scheme for Integrating Concrete Domains into Concept Languages , 1991, IJCAI.

[28]  David S. Johnson,et al.  Computers and In stractability: A Guide to the Theory of NP-Completeness. W. H Freeman, San Fran , 1979 .

[29]  Ronald J. Brachman,et al.  "I Lied About the Trees", Or, Defaults and Definitions in Knowledge Representation , 1985, AI Mag..