The construction of numerical integration rules of degree three for product regions
暂无分享,去创建一个
[1] Ronald Cools,et al. An encyclopaedia of cubature formulas , 2003, J. Complex..
[2] Thomas Gerstner,et al. Numerical integration using sparse grids , 2004, Numerical Algorithms.
[3] A. Stroud. Remarks on the disposition of points in numerical integration formulas. , 1957 .
[4] Ronald Cools,et al. Rotation invariant cubature formulas over the n -dimensional unit cube , 2001 .
[5] K. Ritter,et al. Simple Cubature Formulas with High Polynomial Exactness , 1999 .
[6] D. Xiu. Numerical integration formulas of degree two , 2008 .
[7] I. P. Omelyan,et al. Improved cubature formulae of high degrees of exactness for the square , 2006 .
[8] Ronald Cools,et al. On the (non)-existence of some cubature formulas: gaps between a theory and its applications , 2003, J. Complex..
[9] A. H. Stroud,et al. Numerical integration formulas of degree 3 for product regions and cones , 1961 .
[10] I. P. Mysovskikh. Proof of the minimality of the number of nodes in the cubature formula for a hypersphere , 1966 .
[11] A. Stroud,et al. Numerical integration formulas of degree two , 1960 .
[12] C. Günther. Third Degree Integration Formulas with Four Real Points and Positive Weights in Two Dimensions , 1974 .
[13] K. Ritter,et al. High dimensional integration of smooth functions over cubes , 1996 .
[14] H. M. Möller,et al. Kubaturformeln mit minimaler Knotenzahl , 1976 .
[15] P. Klingenberg,et al. Thomas D. Brock: Biology of Microorganisms. 737 Seiten, zahlreiche, z. T. farbige Abb., Prentice-Hall, Inc. Englewood Cliffs, New Jersey 1970. Preis: 130,— s , 1971 .
[16] Ronald Cools,et al. Advances in multidimensional integration , 2002 .