Computational Complexity of Recursively Enumerable Sets

We survey a variety of recent notions and results for classifying the computational complexity of a recursively enumerable (r.e.) set. These complexity theoretic notions are shown to be equivalent to various recursion theoretic notions and are used to relate the complexity properties of an r.e. set A to its algebraic structure in the appropriate lattice and to the information it encodes.

[1]  Alan L. Selman,et al.  Relativized Halting Problems , 1974 .

[2]  Victor L. Bennison Recursively Enumerable Complexity Sequences and Measure Independence , 1980, J. Symb. Log..

[3]  Alistair H. Lachlan,et al.  Lower Bounds for Pairs of Recursively Enumerable Degrees , 1966 .

[4]  Patrick C. Fischer,et al.  Computational speed-up by effective operators , 1972, Journal of Symbolic Logic.

[5]  Louise Hay The halting problem relativized to complements , 1973 .

[6]  Ivan Marques On Degrees of Unsolvability and Complexity Properties , 1975, J. Symb. Log..

[7]  Donald A. Alton,et al.  Recursively enumerable sets which are uniform for finite extensions , 1971, Journal of Symbolic Logic.

[8]  Jr. Hartley Rogers Theory of Recursive Functions and Effective Computability , 1969 .

[9]  Robert I. Soare,et al.  Some Lowness Properties and Computational Complexity Sequences , 1978, Theor. Comput. Sci..

[10]  Michael Stob,et al.  Splitting properties and jump classes , 1981 .

[11]  C. E. M. Yates A Minimal Pair of Recursively Enumerable Degrees , 1966, J. Symb. Log..

[12]  Robert I. Soare,et al.  Computational complexity, speedable and levelable sets , 1977, Journal of Symbolic Logic.

[13]  Manuel Blum,et al.  On Complexity Properties of Recursively Enumerable Sets , 1973, J. Symb. Log..

[14]  Manuel Blum,et al.  On Effective Procedures for Speeding Up Algorithms , 1971, JACM.

[15]  Robert I. Soare,et al.  Automorphisms of the lattice of recursively enumerable sets. Part II: Low sets , 1982, Ann. Math. Log..

[16]  Emil L. Post Recursively enumerable sets of positive integers and their decision problems , 1944 .

[17]  P. J. Cohen,et al.  THE INDEPENDENCE OF THE CONTINUUM HYPOTHESIS. , 1963, Proceedings of the National Academy of Sciences of the United States of America.

[18]  Manuel Blum,et al.  A Machine-Independent Theory of the Complexity of Recursive Functions , 1967, JACM.

[19]  Wolfgang Maass Recursively Enumerable Generic Sets , 1982, J. Symb. Log..

[20]  R. Soare Automorphisms of the lattice of recursively enumerable sets , 1974 .

[21]  Paul H. Morris,et al.  On Subcreative Sets and S-Reducibility , 1974, J. Symb. Log..

[22]  Robert I. Soare,et al.  d-simple sets, small sets, and degree classes , 1980 .

[23]  Gerald E. Sacks,et al.  The Recursively Enumerable Degrees are Dense , 1964 .

[24]  Wolfgang Maass Characterization of recursively enumerable sets with supersets effectively isomorphic to all recursively enumerable sets , 1983 .