A note on Trillas' CHC models

Trillas et al. [E. Trillas, S. Cubillo, E. Castineira, On conjectures in orthocomplemented lattices, Artificial Intelligence 117 (2000) 255-275] recently proposed a mathematical model for conjectures, hypotheses and consequences (abbr. CHCs), and with this model we can execute certain mathematical reasoning and reformulate some important theorems in classical logic. We demonstrate that the orthomodular condition is not necessary for holding Watanabe's structure theorem of hypotheses, and indeed, in some orthocomplemented but not orthomodular lattices, this theorem is still valid. We use the CHC operators to describe the theorem of deduction, the theorem of contradiction and the Lindenbaum theorem of classical logic, and clarify their existence in the CHC models; a number of examples is presented. And we re-define the CHC operators in residuated lattices, and particularly reveal the essential differences between the CHC operators in orthocomplemented lattices and residuated lattices.

[1]  G. Kalmbach On Orthomodular Lattices , 1990 .

[2]  W. Krull,et al.  Axiomatische Begründung der allgemeinen Idealtheorie [5] , 1999 .

[3]  Janusz Kacprzyk,et al.  Beyond two: theory and applications of multiple-valued logic , 2003 .

[4]  Sylvia Pulmannová,et al.  Orthomodular structures as quantum logics , 1991 .

[5]  K. Popper,et al.  Conjectures and Refutations , 1963 .

[6]  Karl Svozil,et al.  Quantum Logic , 1998, Discrete mathematics and theoretical computer science.

[7]  Huaiqing Wang,et al.  Lattice-theoretic models of conjectures, hypotheses and consequences , 2002, Artif. Intell..

[8]  R. P. Dilworth,et al.  Residuated Lattices. , 1938, Proceedings of the National Academy of Sciences of the United States of America.

[9]  Leopoldo Roman,et al.  Quantum Implication , 1999 .

[10]  Petr Hájek,et al.  Metamathematics of Fuzzy Logic , 1998, Trends in Logic.

[11]  George Georgescu,et al.  Lukasiewicz-Moisil algebras , 2012, Annals of discrete mathematics.

[12]  E. Agazzi Philosophy of nature and natural science , 2001 .

[13]  P. D. Finch,et al.  Quantum logic as an implication algebra , 1970, Bulletin of the Australian Mathematical Society.

[14]  G. Pólya,et al.  Mathematics and Plausible Reasoning , 1956 .

[15]  Ulrich Höhle,et al.  Non-classical logics and their applications to fuzzy subsets : a handbook of the mathematical foundations of fuzzy set theory , 1995 .

[16]  L. Godo,et al.  On the hierarchy of t-norm based residuated fuzzy logics , 2003 .

[17]  A. Iorgulescu SOME DIRECT ASCENDENTS OF WAJSBERG AND MV ALGEBRAS , 2003 .

[18]  Enric Trillas,et al.  On conjectures in orthocomplemented lattices , 2000, Artif. Intell..

[19]  N. Rescher Many Valued Logic , 1969 .

[20]  R. P. Dilworth Abstract Residuation over Lattices , 1938 .

[21]  Patrick Brézillon,et al.  Lecture Notes in Artificial Intelligence , 1999 .

[22]  Jan Pavelka,et al.  On Fuzzy Logic I Many-valued rules of inference , 1979, Math. Log. Q..

[23]  Dov M. Gabbay,et al.  Handbook of Philosophical Logic Vol. 10 , 2001 .

[24]  D. Mundici,et al.  Algebraic Foundations of Many-Valued Reasoning , 1999 .

[25]  E. Trillas,et al.  in Fuzzy Logic , 2002 .

[26]  Peter Jipsen,et al.  Residuated lattices: An algebraic glimpse at sub-structural logics , 2007 .

[27]  Lluis Godo,et al.  Monoidal t-norm based logic: towards a logic for left-continuous t-norms , 2001, Fuzzy Sets Syst..

[28]  Bas C. van Fraassen,et al.  Current Issues in Quantum Logic , 1981 .

[29]  Robert Palmer Dilworth The structure and arithmetical theory of non-commutative residuated lattices , 1939 .

[30]  M. L. Dalla Chiara Some Metalogical Pathologies of Quantum Logic , 1981 .

[31]  Patrick Lincoln,et al.  Linear logic , 1992, SIGA.

[32]  Juan Luis Castro,et al.  On consequence in approximate reasoning , 1994, J. Appl. Non Class. Logics.

[33]  M. Nivat Fiftieth volume of theoretical computer science , 1988 .