A 65-nm SoC Embedded 6T-SRAM Designed for Manufacturability With Read and Write Operation Stabilizing Circuits
暂无分享,去创建一个
K. Ishibashi | M. Yabuuchi | H. Makino | M. Inuishi | T. Yoshihara | K. Nii | Y. Tsukamoto | H. Kawashima | Y. Oda | S. Imaoka | H. Shinohara | Y. Yamaguchi | S. Ohbayashi | K. Tsukamoto | M. Igarashi | M. Takeuchi | K. Ishibashi | H. Kawashima | K. Nii | S. Imaoka | Y. Tsukamoto | H. Makino | T. Yoshihara | H. Shinohara | Y. Yamaguchi | M. Inuishi | M. Yabuuchi | M. Takeuchi | S. Ohbayashi | M. Igarashi | Y. Oda | K. Tsukamoto
[1] A. Asenov. Random dopant induced threshold voltage lowering and fluctuations in sub-0.1 /spl mu/m MOSFET's: A 3-D "atomistic" simulation study , 1998 .
[2] T. Noguchi,et al. Highly stable 65 nm node (CMOS5) 0.56 /spl mu/m/sup 2/ SRAM cell design for very low operation voltage , 2003, 2003 Symposium on VLSI Technology. Digest of Technical Papers (IEEE Cat. No.03CH37407).
[3] M. Yamaoka,et al. Low power SRAM menu for SOC application using Yin-Yang-feedback memory cell technology , 2004, 2004 Symposium on VLSI Circuits. Digest of Technical Papers (IEEE Cat. No.04CH37525).
[4] Naoto Horiguchi,et al. A 65 nm CMOS technology with a high-performance and low-leakage transistor, a 0.55 /spl mu/m/sup 2/ 6T-SRAM cell and robust hybrid-ULK/Cu interconnects for mobile multimedia applications , 2003, IEEE International Electron Devices Meeting 2003.
[5] Koji Nii,et al. Worst-case analysis to obtain stable read/write DC margin of high density 6T-SRAM-array with local Vth variability , 2005, ICCAD-2005. IEEE/ACM International Conference on Computer-Aided Design, 2005..
[6] D. Mosher,et al. A 65 nm CMOS technology for mobile and digital signal processing applications , 2004, IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004..
[7] K. Ishibashi,et al. 0.4-V logic-library-friendly SRAM array using rectangular-diffusion cell and delta-boosted-array voltage scheme , 2004, IEEE Journal of Solid-State Circuits.
[8] G. Temes,et al. Random errors in MOS capacitors , 1982 .
[9] M. Bohr,et al. A fully synchronized, pipelined, and re-configurable 50 Mb SRAM on 90 nm CMOS technology for logic applications , 2003, 2003 Symposium on VLSI Circuits. Digest of Technical Papers (IEEE Cat. No.03CH37408).
[10] P. Stolk,et al. Modeling statistical dopant fluctuations in MOS transistors , 1998 .
[11] Gabor C. Temes,et al. Random error effects in matched MOS capacitors and current sources , 1984 .
[12] E. Morifuji,et al. A 65nm low power CMOS platform with 0.495/spl mu/m/sup 2/ SRAM for digital processing and mobile applications , 2005, Digest of Technical Papers. 2005 Symposium on VLSI Technology, 2005..
[13] K. Eriguchi,et al. Sub-1 /spl mu/m/sup 2/ high density embedded SRAM technologies for 100 nm generation SOC and beyond , 2002, 2002 Symposium on VLSI Technology. Digest of Technical Papers (Cat. No.01CH37303).
[14] N. Vallepalli,et al. A 3-GHz 70-mb SRAM in 65-nm CMOS technology with integrated column-based dynamic power supply , 2005, IEEE Journal of Solid-State Circuits.
[15] K. Nii,et al. 90-nm process-variation adaptive embedded SRAM modules with power-line-floating write technique , 2006, IEEE Journal of Solid-State Circuits.
[16] Marcel J. M. Pelgrom,et al. Matching properties of MOS transistors , 1989 .
[17] K. Nii,et al. A 90-nm low-power 32-kB embedded SRAM with gate leakage suppression circuit for mobile applications , 2004, IEEE Journal of Solid-State Circuits.