A 65-nm SoC Embedded 6T-SRAM Designed for Manufacturability With Read and Write Operation Stabilizing Circuits

In the sub-100-nm CMOS generation, a large local Vth variability degrades the 6T-SRAM cell stability, so that we have to consider this local variability as well as the global variability to achieve high-yield SRAM products. Therefore, we need to employ some assist circuits to expand the SRAM operating margin. We propose a variability-tolerant 6T-SRAM cell layout and new circuit techniques to improve both the read and the write operating margins in the presence of a large Vth variability. By applying these circuit techniques to a 0.494-mum2 SRAM cell with a beta ratio of 1, which is an extremely small cell size, we can achieve a high-yield 8M-SRAM for a wide range of Vth values using a 65-nm low stand-by power (LSTP) CMOS technology

[1]  A. Asenov Random dopant induced threshold voltage lowering and fluctuations in sub-0.1 /spl mu/m MOSFET's: A 3-D "atomistic" simulation study , 1998 .

[2]  T. Noguchi,et al.  Highly stable 65 nm node (CMOS5) 0.56 /spl mu/m/sup 2/ SRAM cell design for very low operation voltage , 2003, 2003 Symposium on VLSI Technology. Digest of Technical Papers (IEEE Cat. No.03CH37407).

[3]  M. Yamaoka,et al.  Low power SRAM menu for SOC application using Yin-Yang-feedback memory cell technology , 2004, 2004 Symposium on VLSI Circuits. Digest of Technical Papers (IEEE Cat. No.04CH37525).

[4]  Naoto Horiguchi,et al.  A 65 nm CMOS technology with a high-performance and low-leakage transistor, a 0.55 /spl mu/m/sup 2/ 6T-SRAM cell and robust hybrid-ULK/Cu interconnects for mobile multimedia applications , 2003, IEEE International Electron Devices Meeting 2003.

[5]  Koji Nii,et al.  Worst-case analysis to obtain stable read/write DC margin of high density 6T-SRAM-array with local Vth variability , 2005, ICCAD-2005. IEEE/ACM International Conference on Computer-Aided Design, 2005..

[6]  D. Mosher,et al.  A 65 nm CMOS technology for mobile and digital signal processing applications , 2004, IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004..

[7]  K. Ishibashi,et al.  0.4-V logic-library-friendly SRAM array using rectangular-diffusion cell and delta-boosted-array voltage scheme , 2004, IEEE Journal of Solid-State Circuits.

[8]  G. Temes,et al.  Random errors in MOS capacitors , 1982 .

[9]  M. Bohr,et al.  A fully synchronized, pipelined, and re-configurable 50 Mb SRAM on 90 nm CMOS technology for logic applications , 2003, 2003 Symposium on VLSI Circuits. Digest of Technical Papers (IEEE Cat. No.03CH37408).

[10]  P. Stolk,et al.  Modeling statistical dopant fluctuations in MOS transistors , 1998 .

[11]  Gabor C. Temes,et al.  Random error effects in matched MOS capacitors and current sources , 1984 .

[12]  E. Morifuji,et al.  A 65nm low power CMOS platform with 0.495/spl mu/m/sup 2/ SRAM for digital processing and mobile applications , 2005, Digest of Technical Papers. 2005 Symposium on VLSI Technology, 2005..

[13]  K. Eriguchi,et al.  Sub-1 /spl mu/m/sup 2/ high density embedded SRAM technologies for 100 nm generation SOC and beyond , 2002, 2002 Symposium on VLSI Technology. Digest of Technical Papers (Cat. No.01CH37303).

[14]  N. Vallepalli,et al.  A 3-GHz 70-mb SRAM in 65-nm CMOS technology with integrated column-based dynamic power supply , 2005, IEEE Journal of Solid-State Circuits.

[15]  K. Nii,et al.  90-nm process-variation adaptive embedded SRAM modules with power-line-floating write technique , 2006, IEEE Journal of Solid-State Circuits.

[16]  Marcel J. M. Pelgrom,et al.  Matching properties of MOS transistors , 1989 .

[17]  K. Nii,et al.  A 90-nm low-power 32-kB embedded SRAM with gate leakage suppression circuit for mobile applications , 2004, IEEE Journal of Solid-State Circuits.