Nonequilibrium quantum phase transitions in the XY model: comparison of unitary time evolution and reduced density operator approaches

We study nonequilibrium quantum phase transitions in the XY spin 1/2 chain using the algebra. We show that the well-known quantum phase transition at a magnetic field of h = 1 also persists in the nonequilibrium setting as long as one of the reservoirs is set to absolute zero temperature. In addition, we find nonequilibrium phase transitions associated with an imaginary part of the correlation matrix for any two different reservoir temperatures at h = 1 and , where ? is the anisotropy and h the magnetic field strength. In particular, two nonequilibrium quantum phase transitions coexist at h = 1. In addition, we study the quantum mutual information in all regimes and find a logarithmic correction of the area law in the nonequilibrium steady state independent of the system parameters. We use these nonequilibrium phase transitions to test the utility of two models of a reduced density operator, namely the Lindblad mesoreservoir and the modified Redfield equation. We show that the nonequilibrium quantum phase transition at h = 1, related to the divergence of magnetic susceptibility, is recovered in the mesoreservoir approach, whereas it is not recovered using the Redfield master equation formalism. However, none of the reduced density operator approaches could recover all the transitions observed by the algebra. We also study the thermalization properties of the mesoreservoir approach.

[1]  Nonequilibrium Fock space for the electron transport problem. , 2009, The Journal of chemical physics.

[2]  G. Vidal,et al.  Entanglement in quantum critical phenomena. , 2002, Physical review letters.

[3]  I. Segal Postulates for General Quantum Mechanics , 1947 .

[4]  Natural Nonequilibrium States in Quantum Statistical Mechanics , 1999, math-ph/9906005.

[5]  T. Prosen,et al.  Transport properties of a boundary-driven one-dimensional gas of spinless fermions. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  T. Prosen Open XXZ spin chain: nonequilibrium steady state and a strict bound on ballistic transport. , 2011, Physical review letters.

[7]  T. Prosen,et al.  Explicit solution of the Lindblad equation for nearly isotropic boundary driven XY spin 1/2 chain , 2010, 1007.2922.

[8]  H. Stanley,et al.  Phase Transitions and Critical Phenomena , 2008 .

[9]  E. Sudarshan,et al.  Completely Positive Dynamical Semigroups of N Level Systems , 1976 .

[10]  P. Zoller,et al.  Topology by dissipation , 2013, 1302.5135.

[11]  Tomaz Prosen,et al.  Operator space entanglement entropy in XY spin chains , 2009, 0903.2432.

[12]  Tomaz Prosen,et al.  Exact solution of Markovian master equations for quadratic Fermi systems: thermal baths, open XY spin chains and non-equilibrium phase transition , 2009, 0910.0195.

[13]  Peiqing Tong,et al.  The Ising and anisotropy phase transitions of the periodic XY model in a transverse field , 2010 .

[14]  A. Dzhioev,et al.  Stability analysis of multiple nonequilibrium fixed points in self-consistent electron transport calculations. , 2011, The Journal of chemical physics.

[15]  V. Eisler,et al.  Area-law violation for the mutual information in a nonequilibrium steady state , 2013, 1311.3327.

[16]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[17]  A. Dzhioev,et al.  Super-fermion representation of quantum kinetic equations for the electron transport problem. , 2010, The Journal of chemical physics.

[18]  E. Lieb,et al.  Two Soluble Models of an Antiferromagnetic Chain , 1961 .

[19]  A. Oleś Fingerprints of spin–orbital entanglement in transition metal oxides , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[20]  La física,et al.  Quantum Phase Transition , 2010 .

[21]  R A Blythe,et al.  Lee-Yang zeros and phase transitions in nonequilibrium steady states. , 2002, Physical review letters.

[22]  Nobuhiko Saitô,et al.  Statistical Physics , 2021, Major American Universities Ph.D. Qualifying Questions and Solutions - Physics.

[23]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[24]  Wanying Wang,et al.  Conclusions and Discussion , 2014 .

[25]  M. Berciu,et al.  Heat transport in quantum spin chains: Relevance of integrability , 2009, 1003.1559.

[26]  T. Prosen,et al.  Nonequlibrium particle and energy currents in quantum chains connected to mesoscopic Fermi reservoirs , 2012, 1204.1321.

[27]  F. Barra,et al.  Nonequilibrium mesoscopic Fermi-reservoir distribution and particle current through a coherent quantum system , 2013, 1302.0232.

[28]  D. Haar,et al.  Statistical Physics , 1971, Nature.

[29]  G. Lindblad On the generators of quantum dynamical semigroups , 1976 .

[30]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[31]  David Ruelle Entropy Production in Quantum Spin Systems , 2001 .

[32]  J. Eisert,et al.  Mutual information area laws for thermal free fermions , 2013, 1301.5646.

[33]  M. Znidaric Spin transport in a one-dimensional anisotropic Heisenberg model. , 2011, Physical review letters.

[34]  P. Zanardi,et al.  Quantum information-geometry of dissipative quantum phase transitions. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[35]  Claude-Alain Pillet,et al.  Non-Equilibrium Steady States of the XY Chain , 2003 .

[36]  Y. Kudasov,et al.  Frustrated lattices of Ising chains , 2012 .

[37]  M. R. Evans Phase transitions in one-dimensional nonequilibrium systems , 2000 .

[38]  Eytan Barouch,et al.  Statistical Mechanics of the X Y Model. II. Spin-Correlation Functions , 1971 .

[39]  T. D. Lee,et al.  Statistical Theory of Equations of State and Phase Transitions. I. Theory of Condensation , 1952 .

[40]  Nonequilibrium Peierls Transition , 2009, 0901.1917.

[41]  D. Ruelle Statistical Mechanics: Rigorous Results , 1999 .

[42]  T. Prosen,et al.  A Markovian kinetic equation approach to electron transport through a quantum dot coupled to superconducting leads , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[43]  Tomaz Prosen,et al.  Third quantization: a general method to solve master equations for quadratic open Fermi systems , 2008, 0801.1257.