Hydrothermal synthesis of perfectly shaped micro- and nanosized carbonated apatite

[1]  V. Zaitsev,et al.  Antibacterial Poly(ε-CL)/Hydroxyapatite Electrospun Fibers Reinforced by Poly(ε-CL)-b-poly(ethylene phosphoric acid) , 2021, International journal of molecular sciences.

[2]  Zhi-qiang Liu,et al.  Recent Trends in the Development of Bone Regenerative Biomaterials , 2021, Frontiers in Cell and Developmental Biology.

[3]  S. Sagadevan,et al.  Recent advances in natural polymer-based hydroxyapatite scaffolds: Properties and applications , 2021, European Polymer Journal.

[4]  Min Chen,et al.  Investigation of EDTA concentration on the size of carbonated flowerlike hydroxyapatite microspheres , 2021, Royal Society Open Science.

[5]  Wudan Li,et al.  Hydroxyapatite Based Materials for Bone Tissue Engineering: A Brief and Comprehensive Introduction , 2021, Crystals.

[6]  Y. Oaki,et al.  Morphological evolution of carbonated hydroxyapatite to faceted nanorods through intermediate states , 2021 .

[7]  I. Levin,et al.  Hydroxyapatite of plate-like morphology obtained by low temperature hydrothermal synthesis , 2021 .

[8]  J. Jansen,et al.  Calcium Phosphate Cements: Optimization toward Biodegradability. , 2020, Acta biomaterialia.

[9]  Iekhsan Othman,et al.  Carbonate Apatite and Hydroxyapatite Formulated with Minimal Ingredients to Deliver SiRNA into Breast Cancer Cells In Vitro and In Vivo , 2020, Journal of functional biomaterials.

[10]  M. Bohner,et al.  β-Tricalcium Phosphate for Bone Substitution: Synthesis and Properties. , 2020, Acta biomaterialia.

[11]  M. Vallet‐Regí,et al.  Substituted hydroxyapatite coatings of bone implants. , 2020, Journal of materials chemistry. B.

[12]  Gurdyal Singh,et al.  Customized hydroxyapatites for bone-tissue engineering and drug delivery applications: a review , 2020, Journal of Sol-Gel Science and Technology.

[13]  Juan Shen,et al.  The synthesis of hydroxyapatite crystals with various morphologies via the solvothermal method using double surfactants , 2020 .

[14]  Changsheng Liu,et al.  Controllable Synthesis of Biomimetic Hydroxyapatite Nanorods with High Osteogenic Bioactivity. , 2020, ACS biomaterials science & engineering.

[15]  H. Yoshikawa,et al.  Bone regeneration with hydroxyapatite-based biomaterials , 2019, Emergent Materials.

[16]  Joon-Hyung Lee,et al.  Effects of pH and reaction temperature on hydroxyapatite powders synthesized by precipitation , 2019, Journal of the Korean Ceramic Society.

[17]  C. Yoder,et al.  A new model for the rationalization of the thermal behavior of carbonated apatites , 2019, Journal of Thermal Analysis and Calorimetry.

[18]  K. Ishikawa Carbonate apatite bone replacement: learn from the bone , 2019, Journal of the Ceramic Society of Japan.

[19]  C. Yoder,et al.  The effect of incorporated carbonate and sodium on the IR spectra of A- and AB-type carbonated apatites , 2019, American Mineralogist.

[20]  K. Ishikawa,et al.  Fabrication and evaluation of interconnected porous carbonate apatite from alpha tricalcium phosphate spheres. , 2019, Journal of biomedical materials research. Part B, Applied biomaterials.

[21]  M. Jaafar,et al.  Preparation of carbonate apatite scaffolds using different carbonate solution and soaking time , 2019, Processing and Application of Ceramics.

[22]  K. Pickering,et al.  A Review on the Use of Hydroxyapatite-Carbonaceous Structure Composites in Bone Replacement Materials for Strengthening Purposes , 2018, Materials.

[23]  L. Pastero,et al.  Habit Change of Monoclinic Hydroxyapatite Crystals Growing from Aqueous Solution in the Presence of Citrate Ions: The Role of 2D Epitaxy , 2018, Crystals.

[24]  B. Ulery,et al.  Calcium and phosphate ions as simple signaling molecules with versatile osteoinductivity , 2018, Biomedical materials.

[25]  G. Duda,et al.  A review of biomaterials in bone defect healing, remaining shortcomings and future opportunities for bone tissue engineering , 2018, Bone & joint research.

[26]  Chen Yang,et al.  3D Printed Fe Scaffolds with HA Nanocoating for Bone Regeneration. , 2018, ACS biomaterials science & engineering.

[27]  Alan A. Coelho,et al.  TOPAS and TOPAS-Academic: an optimization program integrating computer algebra and crystallographic objects written in C++ , 2018 .

[28]  B. Pavan,et al.  Carbonate substitution in the mineral component of bone: Discriminating the structural changes, simultaneously imposed by carbonate in A and B sites of apatite. , 2017, Journal of solid state chemistry.

[29]  Fei Yang,et al.  Effects of HAp and TCP in constructing tissue engineering scaffolds for bone repair. , 2017, Journal of materials chemistry. B.

[30]  K. Ishikawa,et al.  “Fabrication of arbitrarily shaped carbonate apatite foam based on the interlocking process of dicalcium hydrogen phosphate dihydrate” , 2017, Journal of Materials Science: Materials in Medicine.

[31]  S. Matsuya,et al.  Development and characterization of carbonate apatite/β-tricalcium phosphate biphasic cement , 2017 .

[32]  G. Genin,et al.  Protein-free formation of bone-like apatite: New insights into the key role of carbonation. , 2017, Biomaterials.

[33]  K. Ishikawa,et al.  Fabrication of Carbonate Apatite Block through a Dissolution–Precipitation Reaction Using Calcium Hydrogen Phosphate Dihydrate Block as a Precursor , 2017, Materials.

[34]  M. Pokorný,et al.  The release kinetics, antimicrobial activity and cytocompatibility of differently prepared collagen/hydroxyapatite/vancomycin layers: Microstructure vs. nanostructure , 2017, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[35]  Bikash Sarma,et al.  Biomimetic deposition of carbonate apatite and role of carbonate substitution on mechanical properties at nanoscale , 2016 .

[36]  J. Neilson,et al.  Paracrystalline Disorder from Phosphate Ion Orientation and Substitution in Synthetic Bone Mineral. , 2016, Inorganic chemistry.

[37]  J. Pasteris,et al.  The relative stabilities of A- and B-type carbonate substitution in apatites synthesized in aqueous solution , 2016, Mineralogical Magazine.

[38]  Stuart R. Stock,et al.  Hyperelastic “bone”: A highly versatile, growth factor–free, osteoregenerative, scalable, and surgically friendly biomaterial , 2016, Science Translational Medicine.

[39]  K. Ishikawa,et al.  Fabrication of carbonate apatite pseudomorph from highly soluble acidic calcium phosphate salts through carbonation , 2016 .

[40]  K. Ishikawa,et al.  Fabrication of carbonate apatite foam based on the setting reaction of α-tricalcium phosphate foam granules , 2016 .

[41]  C. Ohtsuki,et al.  Hydroxyapatite formation from calcium carbonate single crystal under hydrothermal condition: Effects of processing temperature , 2016 .

[42]  M. Okada,et al.  Synthesis and modification of apatite nanoparticles for use in dental and medical applications , 2015 .

[43]  Juan Shen,et al.  The morphology control of hydroxyapatite microsphere at high pH values by hydrothermal method , 2015 .

[44]  Ying-Jie Zhu,et al.  Synthesis, characterization and applications of calcium carbonate/fructose 1,6-bisphosphate composite nanospheres and carbonated hydroxyapatite porous nanospheres. , 2014, Journal of materials chemistry. B.

[45]  A. Raz-Pasteur,et al.  In vitro elution of vancomycin from biodegradable osteoconductive calcium phosphate-polycaprolactone composite beads for treatment of osteomyelitis. , 2014, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[46]  B. Ludes,et al.  Revisiting carbonate quantification in apatite (bio)minerals: a validated FTIR methodology , 2014 .

[47]  P. Das,et al.  Biocompatible nanocrystalline natural bonelike carbonated hydroxyapatite synthesized by mechanical alloying in a record minimum time. , 2014, Materials science & engineering. C, Materials for biological applications.

[48]  Yingjun Wang,et al.  Effects of hydroxyapatite microparticle morphology on bone mesenchymal stem cell behavior. , 2014, Journal of materials chemistry. B.

[49]  J. Prywer,et al.  Comparative in vitro studies on disodium EDTA effect with and without Proteus mirabilis on the crystallization of carbonate apatite and struvite , 2014 .

[50]  K. Ishikawa,et al.  Fabrication of carbonate apatite blocks from set gypsum based on dissolution-precipitation reaction in phosphate-carbonate mixed solution. , 2014, Dental materials journal.

[51]  Y. Leng,et al.  Infrared spectroscopic characterization of carbonated apatite: a combined experimental and computational study. , 2014, Journal of biomedical materials research. Part A.

[52]  Y. Leng,et al.  Hydrothermal growth of biomimetic carbonated apatite nanoparticles with tunable size, morphology and ultrastructure , 2013 .

[53]  A. Raz-Pasteur,et al.  In vitro antimicrobial activity of vancomycin-eluting bioresorbable β-TCP-polylactic acid nanocomposite material for load-bearing bone repair , 2013, Journal of Materials Science: Materials in Medicine.

[54]  J. Gómez-Morales,et al.  Crystallization of bioinspired citrate-functionalized nanoapatite with tailored carbonate content. , 2012, Acta biomaterialia.

[55]  H. Zreiqat,et al.  A facile method to in situ formation of hydroxyapatite single crystal architecture for enhanced osteoblast adhesion , 2012 .

[56]  Ya-Jun Guo,et al.  Hydrothermal fabrication of mesoporous carbonated hydroxyapatite microspheres for a drug delivery system , 2012 .

[57]  J. Pasteris,et al.  Dehydration and Rehydration of Carbonated Fluor- and Hydroxylapatite , 2012 .

[58]  Ya-Jun Guo,et al.  Fabrication of mesoporous carbonated hydroxyapatite microspheres by hydrothermal method , 2011 .

[59]  B. Darvell,et al.  Morphology and structural characteristics of hydroxyapatite whiskers: effect of the initial Ca concentration, Ca/P ratio and pH. , 2011, Acta biomaterialia.

[60]  Sara E Cosgrove,et al.  Clinical practice guidelines by the infectious diseases society of america for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children: executive summary. , 2011, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[61]  H. Rietveld The Rietveld Method: A Retrospection , 2010 .

[62]  M. Klobukowski,et al.  DFT studies of complexes between ethylenediamine tetraacetate and alkali and alkaline earth cations , 2009 .

[63]  Fang-Lian Yao,et al.  Simultaneous incorporation of carbonate and fluoride in synthetic apatites: Effect on crystallographic and physico-chemical properties. , 2009, Acta biomaterialia.

[64]  M. Fleet Infrared spectra of carbonate apatites: v2-Region bands. , 2009, Biomaterials.

[65]  K. Ishikawa,et al.  Effect of temperature on crystallinity of carbonate apatite foam prepared from alpha-tricalcium phosphate by hydrothermal treatment. , 2009, Bio-medical materials and engineering.

[66]  K. Ishikawa,et al.  Fabrication of macroporous carbonate apatite foam by hydrothermal conversion of alpha-tricalcium phosphate in carbonate solutions. , 2008, Journal of biomedical materials research. Part A.

[67]  F. A. Sheikh,et al.  Physiochemical characterizations of hydroxyapatite extracted from bovine bones by three different methods: extraction of biologically desirable Hap , 2008 .

[68]  Rujie Sun,et al.  Facile surfactant-free synthesis of water-dispersible willow-leaf-like carbonate apatite nanorods in ethanol/water mixed solution and their cytotoxicity , 2008 .

[69]  M. Fleet,et al.  Coupled substitution of type A and B carbonate in sodium-bearing apatite. , 2007, Biomaterials.

[70]  S. Ramakrishna,et al.  Production of ultra-fine bioresorbable carbonated hydroxyapatite. , 2006, Acta biomaterialia.

[71]  M. J. Stott,et al.  First Principles Investigation of Mineral Component of Bone: CO3 Substitutions in Hydroxyapatite , 2005 .

[72]  M. Mazzocchi,et al.  Synthesis of carbonated hydroxyapatites: efficiency of the substitution and critical evaluation of analytical methods , 2005 .

[73]  R. Legeros,et al.  Types of “H2O” in human enamel and in precipitated apatites , 1978, Calcified Tissue Research.

[74]  Hao Wang,et al.  Rapid formation of hydroxyapatite nanostructures by microwave irradiation , 2004 .

[75]  E. Landi,et al.  Influence of synthesis and sintering parameters on the characteristics of carbonate apatite. , 2004, Biomaterials.

[76]  M. Glimcher,et al.  Poorly crystalline apatites: evolution and maturation in vitro and in vivo , 2004, Journal of Bone and Mineral Metabolism.

[77]  M. Fleet,et al.  Carbonate apatite type A synthesized at high pressure: new space group (P3̄) and orientation of channel carbonate ion , 2003 .

[78]  Anna Tampieri,et al.  Carbonated hydroxyapatite as bone substitute , 2003 .

[79]  D. Mooney,et al.  Bioinspired growth of crystalline carbonate apatite on biodegradable polymer substrata. , 2002, Journal of the American Chemical Society.

[80]  W. Bonfield,et al.  Carbonate substitution in precipitated hydroxyapatite: an investigation into the effects of reaction temperature and bicarbonate ion concentration. , 1998, Journal of biomedical materials research.

[81]  Y. Doi,et al.  Sintered carbonate apatites as bioresorbable bone substitutes. , 1998, Journal of biomedical materials research.

[82]  T. Goto,et al.  Influence of Carbonate on Sintering of Apatites , 1993, Journal of dental research.

[83]  K. Crowley,et al.  Structural variations in natural F, OH, and Cl apatites , 1989 .

[84]  P. Hagenmuller,et al.  Structure of the low‐temperature variety of calcium sodium orthophosphate, NaCaPO4 , 1983 .

[85]  J. Trombe,et al.  New concepts in the composition, crystallization and growth of the mineral component of calcified tissues , 1981 .

[86]  R. Young,et al.  Significant precision in crystal structural details. Holly Springs hydroxyapatite , 1969 .

[87]  R. Legeros,et al.  Apatite Crystallites: Effects of Carbonate on Morphology , 1967, Science.

[88]  RACQUEL ZAPANTA-LEGEROS,et al.  Effect of Carbonate on the Lattice Parameters of Apatite , 1965, Nature.