High-dimensional uncertainty quantification using graph-accelerated non-intrusive polynomial chaos and active subspace methods

[1]  John T. Hwang,et al.  Air-taxi transition trajectory optimization using physics-based aerodynamic, acoustic, and motor models , 2023, AIAA SCITECH 2023 Forum.

[2]  John T. Hwang,et al.  Optimally tensor-structured quadrature rule for uncertainty quantification , 2023, AIAA SCITECH 2023 Forum.

[3]  Changting Zhong,et al.  A novel data-driven sparse polynomial chaos expansion for high-dimensional problems based on active subspace and sparse Bayesian learning , 2023, Structural and Multidisciplinary Optimization.

[4]  Li Liu,et al.  A Review of Uncertainty Quantification in Deep Learning: Techniques, Applications and Challenges , 2020, Inf. Fusion.

[5]  S. Rahman,et al.  Practical uncertainty quantification analysis involving statistically dependent random variables , 2020 .

[6]  Q. Yang,et al.  Reliability analysis and design of a single diode solar cell model using polynomial chaos and active subspace , 2019, Microelectronics Reliability.

[7]  Sankaran Mahadevan,et al.  Uncertainty aggregation and reduction in structure–material performance prediction , 2018 .

[8]  Daniel A. Tortorelli,et al.  Topology optimization under uncertainty via non-intrusive polynomial chaos expansion , 2017 .

[9]  Sharif Rahman,et al.  Wiener-Hermite Polynomial Expansion for Multivariate Gaussian Probability Measures , 2017, 1704.07912.

[10]  Sankaran Mahadevan,et al.  A Single-Loop Kriging Surrogate Modeling for Time-Dependent Reliability Analysis , 2016 .

[11]  Lorenzo Pareschi,et al.  Uncertainty Quantification in Control Problems for Flocking Models , 2015, 1503.00548.

[12]  Francesco Montomoli,et al.  Uncertainty Quantification in Computational Fluid Dynamics and Aircraft Engines , 2015 .

[13]  Wei-Xin Ren,et al.  Analytical uncertainty quantification for modal frequencies with structural parameter uncertainty using a Gaussian process metamodel , 2014 .

[14]  Alireza Doostan,et al.  Compressive sampling of polynomial chaos expansions: Convergence analysis and sampling strategies , 2014, J. Comput. Phys..

[15]  Roger G. Ghanem,et al.  Basis adaptation in homogeneous chaos spaces , 2014, J. Comput. Phys..

[16]  Qiqi Wang,et al.  Erratum: Active Subspace Methods in Theory and Practice: Applications to Kriging Surfaces , 2013, SIAM J. Sci. Comput..

[17]  A. Doostan,et al.  Nonlinear Propagation of Orbit Uncertainty Using Non-Intrusive Polynomial Chaos , 2013 .

[18]  Jérôme Morio,et al.  Global and local sensitivity analysis methods for a physical system , 2011 .

[19]  Michel van Tooren,et al.  Review of uncertainty-based multidisciplinary design optimization methods for aerospace vehicles , 2011 .

[20]  S. Keleş,et al.  Sparse partial least squares regression for simultaneous dimension reduction and variable selection , 2010, Journal of the Royal Statistical Society. Series B, Statistical methodology.

[21]  M. Eldred,et al.  Comparison of Non-Intrusive Polynomial Chaos and Stochastic Collocation Methods for Uncertainty Quantification , 2009 .

[22]  Bruno Sudret,et al.  Sparse polynomial chaos expansions and adaptive stochastic finite elements using a regression approach , 2008 .

[23]  Fabio Nobile,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007, SIAM Rev..

[24]  Habib N. Najm,et al.  Stochastic spectral methods for efficient Bayesian solution of inverse problems , 2005, J. Comput. Phys..

[25]  Dongbin Xiu,et al.  High-Order Collocation Methods for Differential Equations with Random Inputs , 2005, SIAM J. Sci. Comput..

[26]  Irfan Kaymaz,et al.  Application Of Kriging Method To Structural Reliability Problems , 2005 .

[27]  J. Wooldridge Applications of Generalized Method of Moments Estimation , 2001 .

[28]  Kyung K. Choi,et al.  A NEW STUDY ON RELIABILITY-BASED DESIGN OPTIMIZATION , 1999 .

[29]  N. Wiener The Homogeneous Chaos , 1938 .

[30]  P. Gardoni,et al.  A review and assessment of importance sampling methods for reliability analysis , 2022, Structural Safety.

[31]  Omar M. Knio,et al.  Spectral Methods for Uncertainty Quantification , 2010 .

[32]  Tae Hee Lee,et al.  Robust Design: An Overview , 2006 .