A 6th order staggered compact finite difference method for the incompressible Navier-Stokes and scalar transport equations
暂无分享,去创建一个
[1] C. W. Gear,et al. Numerical initial value problem~ in ordinary differential eqttations , 1971 .
[2] Asmund Huser,et al. Direct numerical simulation of turbulent flow in a square duct , 1992 .
[3] B. J. Boersma,et al. A staggered compact finite difference formulation for the compressible Navier-Stokes equations , 2005 .
[4] R. Knikker,et al. Study of a staggered fourth‐order compact scheme for unsteady incompressible viscous flows , 2009 .
[5] M. Niederschulte. Turbulent flow through a rectangular channel , 1989 .
[6] P. Wesseling. Principles of Computational Fluid Dynamics , 2000 .
[7] Miguel R. Visbal,et al. On the use of higher-order finite-difference schemes on curvilinear and deforming meshes , 2002 .
[8] Per Lötstedt,et al. High order accurate solution of the incompressible Navier-Stokes equations , 2005 .
[9] S. Gavrilakis,et al. Numerical simulation of low-Reynolds-number turbulent flow through a straight square duct , 1992, Journal of Fluid Mechanics.
[10] Joel H. Ferziger,et al. A robust high-order compact method for large eddy simulation , 2003 .
[11] E. Erturk,et al. Fourth‐order compact formulation of Navier–Stokes equations and driven cavity flow at high Reynolds numbers , 2004, ArXiv.
[12] F. Harlow,et al. Numerical Calculation of Time‐Dependent Viscous Incompressible Flow of Fluid with Free Surface , 1965 .
[13] E. Erturk,et al. Numerical solutions of 2‐D steady incompressible driven cavity flow at high Reynolds numbers , 2004, ArXiv.
[14] Peter Moore,et al. Simulation and measurement of flow generated noise , 2007, J. Comput. Phys..
[15] Javier Jiménez,et al. A high-resolution code for turbulent boundary layers , 2009, J. Comput. Phys..
[16] S. Lele. Compact finite difference schemes with spectral-like resolution , 1992 .
[17] Ayodeji O. Demuren,et al. HIGHER-ORDER COMPACT SCHEMES FOR NUMERICAL SIMULATION OF INCOMPRESSIBLE FLOWS, PART I: THEORETICAL DEVELOPMENT , 2001 .
[18] Joel H. Ferziger,et al. Computational methods for fluid dynamics , 1996 .
[19] O. Botella,et al. BENCHMARK SPECTRAL RESULTS ON THE LID-DRIVEN CAVITY FLOW , 1998 .
[20] Cornelis Vuik,et al. GMRESR: a family of nested GMRES methods , 1994, Numer. Linear Algebra Appl..