Impact of modulation on CMB B-mode polarization experiments

We investigate the impact of both slow and fast polarization modulation strategies on the science return of upcoming ground-based experiments aimed at measuring the B-mode polarization of the cosmic microwave background. Using detailed simulations of the Cl OVER experiment, we compare the ability of modulated and un-modulated observations to recover the signature of gravitational waves in the polarized CMB sky in the presence of a number of anticipated systematic effects. The general expectations that fast modulation is helpful in mitigating low-frequency detector noise, and that the additional redundancy in the projection of the instrument's polarization sensitivity directions on to the sky when modulating reduces the impact of instrumental polarization, particularly for fast modulation, are borne out by our simulations. Neither low-frequency polarized atmospheric fluctuations nor systematic errors in the polarization sensitivity directions are mitigated by modulation. Additionally, we find no significant reduction in the effect of pointing errors by modulation. For a Cl OVER-like experiment, pointing jitter should be negligible but any systematic miscalibration of the polarization coordinate reference system results in significant E–B mixing on all angular scales and will require careful control. We also stress the importance of combining data from multiple detectors in order to remove the effects of common-mode systematics (such as un-polarized 1/f atmospheric noise) on the measured polarization signal. Finally we compare the performance of our simulated experiment with the predicted performance from a Fisher analysis. We find good agreement between the (optimal) Fisher predictions and the simulated experiment except for the very largest scales where the power spectrum estimator we have used introduces additional variance to the B-mode signal recovered from our simulations. In terms of detecting the total B-mode signal, including lensing, the Fisher analysis and the simulations are in excellent agreement. For a detection of the primordial B-mode signal only, using an input tensor-to-scalar ratio of r= 0.026, the Fisher analysis predictions are ∼20 per cent better than the simulated performance.

[1]  M. Halpern,et al.  Functional Description of Read-out Electronics for Time-Domain Multiplexed Bolometers for Millimeter and Sub-millimeter Astronomy , 2008 .

[2]  D. Barkats,et al.  New Measurements of Fine-Scale CMB Polarization Power Spectra from CAPMAP at Both 40 and 90 GHz , 2008 .

[3]  U. Seljak,et al.  An all sky analysis of polarization in the microwave background , 1996, astro-ph/9609170.

[4]  Max Tegmark,et al.  How to measure CMB polarization power spectra without losing information , 2001 .

[5]  M. Zaldarriaga,et al.  Benchmark parameters for CMB polarization experiments , 2002, astro-ph/0210096.

[6]  M. Kaplinghat,et al.  Search for Gravitational Waves in the CMB After WMAP3: Foreground Confusion and The Optimal Frequency Coverage for Foreground Minimization , 2006, astro-ph/0610829.

[7]  D. Twerenbold,et al.  Cryogenic particle detectors , 1996 .

[8]  P. A. R. Ade,et al.  A Measurement of the CMB EE Spectrum from the 2003 Flight of BOOMERANG , 2005, astro-ph/0507514.

[9]  G. Hilton,et al.  Transition-Edge Sensors , 2005 .

[10]  P. A. R. Ade,et al.  MAXIPOL: Data Analysis and Results , 2006, astro-ph/0611392.

[11]  M. Halpern,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: ANGULAR POWER SPECTRA , 2008, The Astrophysical Journal Supplement Series.

[12]  J. Mather,et al.  Space Telescopes and Instrumentation I: Optical, Infrared, and Millimeter , 2006 .

[13]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE * OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[14]  Steven G. Johnson,et al.  The Design and Implementation of FFTW3 , 2005, Proceedings of the IEEE.

[15]  M. Halpern,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: The Angular Power Spectrum , 2003, astro-ph/0302217.

[16]  Proceedings of the IEEE , 2018, IEEE Journal of Emerging and Selected Topics in Power Electronics.

[17]  Wayne Hu,et al.  Weak lensing of the CMB: Sampling errors on B modes , 2004 .

[18]  E. Bunn Detectability of microwave background polarization , 2001, astro-ph/0108209.

[19]  M. L. Brown,et al.  Map making in small field modulated CMB polarization experiments: approximating the maximum likelihood method , 2008, 0807.3658.

[20]  Anthony Challinor,et al.  Systematic errors in cosmic microwave background polarization measurements , 2007 .

[21]  Anthony J. Walton,et al.  Characterization of a prototype SCUBA-2 1280-pixel submillimetre superconducting bolometer array , 2006, SPIE Astronomical Telescopes + Instrumentation.

[22]  Nicolas Ponthieu,et al.  CMB polarization systematics due to beam asymmetry: Impact on inflationary science , 2007, 0709.1513.

[23]  Matias Zaldarriaga Polarization of the microwave background in reionized models , 1997 .

[24]  P. A. R. Ade,et al.  MAXIPOL: Cosmic Microwave Background Polarimetry Using a Rotating Half-Wave Plate , 2006, astro-ph/0611394.

[25]  Matias Zaldarriaga,et al.  General solution to the E-B mixing problem , 2007 .

[26]  Yong-Seon Song,et al.  Determining neutrino mass from the cosmic microwave background alone. , 2003, Physical review letters.

[27]  J. M. Kovac,et al.  DASI Three-Year Cosmic Microwave Background Polarization Results , 2004 .

[28]  U. Seljak,et al.  Signature of gravity waves in polarization of the microwave background , 1996, astro-ph/9609169.

[29]  S. R. Golwala,et al.  SPIDER: a balloon-borne large-scale CMB polarimeter , 2008, Astronomical Telescopes + Instrumentation.

[30]  K. Gorski,et al.  HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere , 2004, astro-ph/0409513.

[31]  Kendrick M. Smith Pseudo- C ℓ estimators which do not mix E and B modes , 2006 .

[32]  A. Lewis,et al.  Efficient computation of CMB anisotropies in closed FRW models , 1999, astro-ph/9911177.

[33]  Edward J. Wollack,et al.  Three Year Wilkinson Microwave Anistropy Probe (WMAP) Observations: Polarization Analysis , 2006, astro-ph/0603450.

[34]  Adrian T. Lee,et al.  The EBEX experiment , 2004, SPIE Optics + Photonics.

[35]  M. Halpern,et al.  Spider Optimization: Probing the Systematics of a Large-Scale B-Mode Experiment , 2007, 0710.0375.

[36]  E. Leitch,et al.  QUaD: A HIGH-RESOLUTION COSMIC MICROWAVE BACKGROUND POLARIMETER , 2008, 0805.1990.

[37]  C. L. Kuo,et al.  Millimeter Wavelength Brightness Fluctuations of the Atmosphere above the South Pole , 2004, astro-ph/0412031.

[38]  Asantha Cooray,et al.  Separation of gravitational-wave and cosmic-shear contributions to cosmic microwave background polarization. , 2002, Physical review letters.

[39]  J. R. Bond,et al.  Implications of the Cosmic Background Imager Polarization Data , 2007 .

[40]  A. Challinor,et al.  Error analysis of quadratic power spectrum estimates for cosmic microwave background polarization: sampling covariance , 2004, astro-ph/0410097.

[41]  Paolo de Bernardis,et al.  B-Pol: detecting primordial gravitational waves generated during inflation , 2008, 0808.1881.

[42]  B. Krauskopf,et al.  Proc of SPIE , 2003 .

[43]  Edward J. Wollack,et al.  Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Data Processing, Sky Maps, & Basic Results , 2008, 0803.0732.

[44]  A. Lewis,et al.  Weak gravitational lensing of the CMB , 2006, astro-ph/0601594.

[45]  S. WEINTROUB,et al.  A Review of Scientific Instruments , 1932, Nature.

[46]  Silvano Fineschi,et al.  Polarimetry in Astronomy , 2003 .

[47]  A. Challinor,et al.  What can be learned from the lensed cosmic microwave background B-mode polarization power spectrum? , 2005, astro-ph/0511703.

[48]  E. Leitch,et al.  SECOND AND THIRD SEASON QUaD COSMIC MICROWAVE BACKGROUND TEMPERATURE AND POLARIZATION POWER SPECTRA , 2008, 0805.1944.

[49]  John E. Carlstrom,et al.  Degree Angular Scale Interferometer 3 Year Cosmic Microwave Background Polarization Results , 2005 .

[50]  Albert Stebbins,et al.  A Probe of Primordial Gravity Waves and Vorticity , 1997 .

[51]  Anthony Challinor,et al.  Analysis of CMB polarization on an incomplete sky , 2001 .

[52]  Yong-Seon Song,et al.  Limit on the detectability of the energy scale of inflation. , 2002, Physical review letters.

[53]  G. Hilton,et al.  Prototype system for superconducting quantum interference device multiplexing of large-format transition-edge sensor arrays , 2003 .