Evolving problems to learn about particle swarm and other optimisers

We use evolutionary computation (EC) to automatically find problems which demonstrate the strength and weaknesses of modern search heuristics. In particular we analyse particle swarm optimization (PSO) and differential evolution (DE). Both evolutionary algorithms are contrasted with a robust deterministic gradient based searcher (based on Newton-Raphson). The fitness landscapes made by genetic programming (GP) are used to illustrate difficulties in GAs and PSOs thereby explaining how they work and allowing us to devise better extended particle swarm systems (XPS)

[1]  James Kennedy,et al.  The Behavior of Particles , 1998, Evolutionary Programming.

[2]  William B. Langdon,et al.  Understanding particle swarm optimisation by evolving problem landscapes , 2005, Proceedings 2005 IEEE Swarm Intelligence Symposium, 2005. SIS 2005..

[3]  Zbigniew Michalewicz,et al.  Evolutionary Computation at the Edge of Feasibility , 1996, PPSN.

[4]  Mauro Birattari,et al.  Swarm Intelligence , 2012, Lecture Notes in Computer Science.

[5]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[6]  J. Davenport Editor , 1960 .

[7]  Ivan Zelinka,et al.  ON STAGNATION OF THE DIFFERENTIAL EVOLUTION ALGORITHM , 2000 .

[8]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[9]  Ivan Zelinka,et al.  Mechanical engineering design optimization by differential evolution , 1999 .

[10]  W. B. Langdon,et al.  Genetic Programming and Data Structures , 1998, The Springer International Series in Engineering and Computer Science.

[11]  Rainer Storn,et al.  FIWIZ — A Versatile Program for the Design of Digital Filters Using Differential Evolution , 2005 .

[12]  Maurice Clerc,et al.  The particle swarm - explosion, stability, and convergence in a multidimensional complex space , 2002, IEEE Trans. Evol. Comput..

[13]  E Windisch,et al.  [South Africa]. , 1976, Osterreichische Krankenpflegezeitschrift.

[14]  Katherine D. Blake To San Francisco , 1911 .

[15]  Frans van den Bergh,et al.  An analysis of particle swarm optimizers , 2002 .

[16]  Riccardo Poli,et al.  Foundations of Genetic Programming , 1999, Springer Berlin Heidelberg.

[17]  R. Storn,et al.  Differential Evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces , 2004 .

[18]  Kenneth V. Price,et al.  An introduction to differential evolution , 1999 .

[19]  Gilbert Syswerda,et al.  A Study of Reproduction in Generational and Steady State Genetic Algorithms , 1990, FOGA.

[20]  E. Ozcan,et al.  Particle swarm optimization: surfing the waves , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[21]  R. Storn,et al.  Differential Evolution , 2004 .