Estimation of Object Motion Parameters from Noisy Images

An approach is presented for the estimation of object motion parameters based on a sequence of noisy images. The problem considered is that of a rigid body undergoing unknown rotational and translational motion. The measurement data consists of a sequence of noisy image coordinates of two or more object correspondence points. By modeling the object dynamics as a function of time, estimates of the model parameters (including motion parameters) can be extracted from the data using recursive and/or batch techniques. This permits a desired degree of smoothing to be achieved through the use of an arbitrarily large number of images. Some assumptions regarding object structure are presently made. Results are presented for a recursive estimation procedure: the case considered here is that of a sequence of one dimensional images of a two dimensional object. Thus, the object moves in one transverse dimension, and in depth, preserving the fundamental ambiguity of the central projection image model (loss of depth information). An iterated extended Kalman filter is used for the recursive solution. Noise levels of 5-10 percent of the object image size are used. Approximate Cramer-Rao lower bounds are derived for the model parameter estimates as a function of object trajectory and noise level. This approach may be of use in situations where it is difficult to resolve large numbers of object match points, but relatively long sequences of images (10 to 20 or more) are available.

[1]  L Howarth,et al.  Principles of Dynamics , 1964 .

[2]  N. L. Johnson,et al.  Linear Statistical Inference and Its Applications , 1966 .

[3]  Arthur Gelb,et al.  Applied Optimal Estimation , 1974 .

[4]  A. Meiri Correspondence: On monocular perception of 3-D moving objects , 1980 .

[5]  A. Zvi Meiri Correspondence: On monocular perception of 3-D moving objects , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  J. Roach,et al.  Determining the movement of objects from a sequence of images , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  B. Anderson,et al.  Optimal Filtering , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[8]  Tzay Y. Young,et al.  A Mathematical Model for Computer Image Tracking , 1982, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  Dana H. Ballard,et al.  Rigid body motion from depth and optical flow , 1983, Comput. Vis. Graph. Image Process..

[10]  Thomas S. Huang,et al.  Estimating three-dimensional motion parameters of a rigid planar patch, III: Finite point correspondences and the three-view problem , 1984 .

[11]  Thomas S. Huang,et al.  Uniqueness and Estimation of Three-Dimensional Motion Parameters of Rigid Objects with Curved Surfaces , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[12]  Thomas S. Huang,et al.  Some Experiments on Estimating the 3-D Motion Parameters of a Rigid Body from Two Consecutive Image Frames , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  Edmund Taylor Whittaker,et al.  A Treatise on the Analytical Dynamics of Particles and Rigid Bodies: PRINCIPLES AVAILABLE FOR THE INTEGRATION , 1988 .