The MLL recombinome of acute leukemias in 2017

[1]  C. Bole-Feysot,et al.  Recurrent KIF2A mutations are responsible for classic lissencephaly , 2017, neurogenetics.

[2]  Shuang Yang,et al.  Tcf12, A Member of Basic Helix‐Loop‐Helix Transcription Factors, Mediates Bone Marrow Mesenchymal Stem Cell Osteogenic Differentiation In Vitro and In Vivo , 2017, Stem cells.

[3]  A. Morris,et al.  CRISPR-Cas9 Mediated NOX4 Knockout Inhibits Cell Proliferation and Invasion in HeLa Cells , 2017, PloS one.

[4]  Rui Liu,et al.  KIF2A regulates the spindle assembly and the metaphase I-anaphase I transition in mouse oocyte , 2016, Scientific Reports.

[5]  Qiu-Xia Liang,et al.  Kif2a regulates spindle organization and cell cycle progression in meiotic oocytes , 2016, Scientific Reports.

[6]  F. Dautry,et al.  Post-transcriptional gene silencing activity of human GIGYF2. , 2016, Biochemical and biophysical research communications.

[7]  C. Mroske,et al.  CLTC as a clinically novel gene associated with multiple malformations and developmental delay , 2016, American journal of medical genetics. Part A.

[8]  R. Marschalek Systematic Classification of Mixed-Lineage Leukemia Fusion Partners Predicts Additional Cancer Pathways , 2015, Annals of laboratory medicine.

[9]  Zhenbo Wang,et al.  Cep55 regulates spindle organization and cell cycle progression in meiotic oocyte , 2015, Scientific Reports.

[10]  M. Hoshino,et al.  TTBK2 with EB1/3 regulates microtubule dynamics in migrating cells through KIF2A phosphorylation , 2015, The Journal of cell biology.

[11]  G. Juhász,et al.  Drosophila Gyf/GRB10 interacting GYF protein is an autophagy regulator that controls neuron and muscle homeostasis , 2015, Autophagy.

[12]  F. Ducray,et al.  TCF12 is mutated in anaplastic oligodendroglioma , 2015, Nature Communications.

[13]  R. Marschalek,et al.  Evidence-based RT-PCR methods for the detection of the 8 most common MLL aberrations in acute leukemias. , 2015, Leukemia research.

[14]  A. Feuchtinger,et al.  CLIP2 as radiation biomarker in papillary thyroid carcinoma , 2014, Oncogene.

[15]  F. Brodsky,et al.  Clathrin light chains are required for the gyrating-clathrin recycling pathway and thereby promote cell migration , 2014, Nature Communications.

[16]  M. Eguchi,et al.  CLTC‐ALK fusion as a primary event in congenital blastic plasmacytoid dendritic cell neoplasm , 2014, Genes, chromosomes & cancer.

[17]  W. Choi,et al.  The MLL recombinome of acute leukemias in 2013 , 2013, Leukemia.

[18]  R. Marschalek,et al.  The distribution of MLL breakpoints correlates with outcome in infant acute leukaemia , 2013, British journal of haematology.

[19]  Thomas A. Milne,et al.  RUNX1 Is a Key Target in t(4;11) Leukemias that Contributes to Gene Activation through an AF4-MLL Complex Interaction , 2013, Cell reports.

[20]  J. Hess,et al.  A Subset of Mixed Lineage Leukemia Proteins Has Plant Homeodomain (PHD)-mediated E3 Ligase Activity* , 2012, The Journal of Biological Chemistry.

[21]  A. Gingras,et al.  A Novel 4EHP-GIGYF2 Translational Repressor Complex Is Essential for Mammalian Development , 2012, Molecular and Cellular Biology.

[22]  D. Campana,et al.  Minimal residual disease-guided treatment deintensification for children with acute lymphoblastic leukemia: results from the Malaysia-Singapore acute lymphoblastic leukemia 2003 study. , 2012, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[23]  Michele K. Anderson,et al.  HEB in the Spotlight: Transcriptional Regulation of T-Cell Specification, Commitment, and Developmental Plasticity , 2012, Clinical & developmental immunology.

[24]  J. Hess,et al.  ECSASB2 mediates MLL degradation during hematopoietic differentiation. , 2012, Blood.

[25]  T. Dingermann,et al.  A complex MLL rearrangement identified five years after initial MDS diagnosis results in out-of-frame fusions without progression to acute leukemia. , 2011, Cancer genetics.

[26]  Yonghong Xiao,et al.  Selective killing of mixed lineage leukemia cells by a potent small-molecule DOT1L inhibitor. , 2011, Cancer cell.

[27]  Y. Takeshima,et al.  Persistent detection of a novel MLL-SACM1L rearrangement in the absence of leukemia. , 2010, Leukemia research.

[28]  J. V. van Dongen,et al.  Genetic aberrations in paediatric acute leukaemias and implications for management of patients. , 2010, The Lancet. Oncology.

[29]  M. Cleary,et al.  Binding of the MLL PHD3 finger to histone H3K4me3 is required for MLL-dependent gene transcription. , 2010, Journal of molecular biology.

[30]  J. Wysocka,et al.  Flipping MLL1's Switch One Proline at a Time , 2010, Cell.

[31]  Thomas A. Milne,et al.  Pro Isomerization in MLL1 PHD3-Bromo Cassette Connects H3K4me Readout to CyP33 and HDAC-Mediated Repression , 2010, Cell.

[32]  K. Mimori,et al.  Abnormal Expression of PFDN4 in Colorectal Cancer: A Novel Marker for Prognosis , 2010, Annals of Surgical Oncology.

[33]  T. Dingermann,et al.  The AF4.MLL fusion protein is capable of inducing ALL in mice without requirement of MLL.AF4. , 2010, Blood.

[34]  M. D. Boer,et al.  Prognostic significance of minimal residual disease in infants with acute lymphoblastic leukemia treated within the Interfant-99 protocol , 2009, Leukemia.

[35]  Xiaobo Xia,et al.  H3K79 methylation profiles define murine and human MLL-AF4 leukemias. , 2008, Cancer cell.

[36]  Scott A. Armstrong,et al.  MLL translocations, histone modifications and leukaemia stem-cell development , 2007, Nature Reviews Cancer.

[37]  P. Oliver,et al.  Transcription linked to recombination: a gene-internal promoter coincides with the recombination hot spot II of the human MLL gene , 2007, Oncogene.

[38]  T. Dingermann,et al.  Spliced MLL fusions: a novel mechanism to generate functional chimeric MLL-MLLT1 transcripts in t(11;19)(q23;p13.3) leukemia , 2007, Leukemia.

[39]  M. D. Boer,et al.  The MLL recombinome of acute leukemias , 2006, Leukemia.

[40]  E. Thiel,et al.  Monitoring minimal residual disease by quantification of genomic chromosomal breakpoint sequences in acute leukemias with MLL aberrations , 2006, Leukemia.

[41]  J. Sibarita,et al.  A role for the Rab6A′ GTPase in the inactivation of the Mad2‐spindle checkpoint , 2006, The EMBO journal.

[42]  J. Hess,et al.  The eleven-nineteen-leukemia protein ENL connects nuclear MLL fusion partners with chromatin , 2005, Oncogene.

[43]  K. Ullman,et al.  Versatility at the nuclear pore complex: lessons learned from the nucleoporin Nup153 , 2005, Chromosoma.

[44]  T. Rabbitts,et al.  The versatile mixed lineage leukaemia gene MLL and its many associations in leukaemogenesis. , 2005, Seminars in cancer biology.

[45]  F. Ross,et al.  Interphase molecular cytogenetic screening for chromosomal abnormalities of prognostic significance in childhood acute lymphoblastic leukaemia: a UK Cancer Cytogenetics Group Study , 2005, British journal of haematology.

[46]  Yi Zhang,et al.  hDOT1L Links Histone Methylation to Leukemogenesis , 2005, Cell.

[47]  R. Pieters,et al.  Diagnostic tool for the identification of MLL rearrangements including unknown partner genes. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[48]  A. Bursen,et al.  Interaction of AF4 Wildtype and AF4•MLL Fusion Protein with SIAH Proteins: Indication for T(4;11) Pathobiology?. , 2004 .

[49]  T. Dingermann,et al.  Interaction of AF4 wild-type and AF4·MLL fusion protein with SIAH proteins: indication for t(4;11) pathobiology? , 2004, Oncogene.

[50]  J. Dongen,et al.  Split-signal FISH for detection of chromosome aberrations in acute lymphoblastic leukemia , 2004, Leukemia.

[51]  N. Zeleznik-Le,et al.  MLL repression domain interacts with histone deacetylases, the polycomb group proteins HPC2 and BMI-1, and the corepressor C-terminal-binding protein , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[52]  C. Pui,et al.  Clinical heterogeneity in childhood acute lymphoblastic leukemia with 11q23 rearrangements , 2003, Leukemia.

[53]  C. Pui,et al.  Outcome of treatment in childhood acute lymphoblastic leukaemia with rearrangements of the 11q23 chromosomal region , 2002, The Lancet.

[54]  D. Reinberg,et al.  Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. , 2001, Genes & development.

[55]  Dean Nizetic,et al.  Fusion of two novel genes, RBM15 and MKL1, in the t(1;22)(p13;q13) of acute megakaryoblastic leukemia , 2001, Nature Genetics.

[56]  M. Diaz,et al.  Protein Interactions of the MLL PHD Fingers Modulate MLL Target Gene Regulation in Human Cells , 2001, Molecular and Cellular Biology.

[57]  C. Felix Leukemias related to treatment with DNA topoisomerase II inhibitors. , 2001, Medical and pediatric oncology.

[58]  H. Beverloo,et al.  Rapid and sensitive detection of all types of MLL gene translocations with a single FISH probe set , 1999, Leukemia.

[59]  D. Arthur,et al.  Cytogenetic studies of infant acute lymphoblastic leukemia: poor prognosis of infants with t(4;11) – a report of the Children’s Cancer Group , 1999, Leukemia.

[60]  J. Rowley,et al.  An in vivo topoisomerase II cleavage site and a DNase I hypersensitive site colocalize near exon 9 in the MLL breakpoint cluster region. , 1998, Blood.

[61]  B. Johansson,et al.  Derivative chromosomes of 11q23-translocations in hematologic malignancies , 1998, Leukemia.

[62]  M. Stanulla,et al.  DNA cleavage within the MLL breakpoint cluster region is a specific event which occurs as part of higher-order chromatin fragmentation during the initial stages of apoptosis , 1997, Molecular and cellular biology.

[63]  R. Marschalek,et al.  An alternative splice process renders the MLL protein either into a transcriptional activator or repressor. , 2013, Die Pharmazie.

[64]  Tabiwang N. Arrey,et al.  The leukemogenic AF4–MLL fusion protein causes P-TEFb kinase activation and altered epigenetic signatures , 2011, Leukemia.

[65]  R. Arceci Novel prognostic subgroups in childhood 11q23/MLL-rearranged acute myeloid leukemia: results of an international retrospective study , 2010 .

[66]  M. Krzywinski,et al.  New insights to the MLL recombinome of acute leukemias , 2009, Leukemia.

[67]  K. Davies,et al.  The mixed-lineage leukemia fusion partner AF4 stimulates RNA polymerase II transcriptional elongation and mediates coordinated chromatin remodeling. , 2007, Human molecular genetics.