Vector optimization and generalized Lagrangian duality

In this paper, foundations of a new approach for solving vector optimization problems are introduced. Generalized Lagrangian duality, related for the first time with vector optimization, provides new scalarization techniques and allows for the generation of efficient solutions for problems which are not required to satisfy any convexity assumptions.

[1]  Andrzej Osyczka,et al.  Multicriterion optimization in engineering with FORTRAN programs , 1984 .

[2]  Andrzej P. Wierzbicki,et al.  The Use of Reference Objectives in Multiobjective Optimization , 1979 .

[3]  Daniel P. Giesy,et al.  Application of multiobjective optimization in aircraft control systems design , 1979, Autom..

[4]  H. P. Benson,et al.  Existence of efficient solutions for vector maximization problems , 1978 .

[5]  Ralph E. Steuer,et al.  An interactive weighted Tchebycheff procedure for multiple objective programming , 1983, Math. Program..

[6]  H. J. Greenberg,et al.  Generalized Penalty-Function Concepts in Mathematical Optimization , 1970, Oper. Res..

[7]  Heinz Bernau,et al.  Use of exact penalty functions to determine efficient decisions , 1990 .

[8]  F. J. Gould Extensions of Lagrange Multipliers in Nonlinear Programming , 1969 .

[9]  Andrzej Osyczka,et al.  Multicriteria Design Optimization: Procedures and Applications , 1990 .

[10]  A. M. Geoffrion Proper efficiency and the theory of vector maximization , 1968 .

[11]  Michael M. Kostreva,et al.  Multiple-objective programming with polynomial objectives and constraints , 1992 .

[12]  M. S. Bazaraa Geometry and resolution of duality gaps , 1973 .

[13]  Matthew L. TenHuisen Generalized Lagrangian Duality in Multiple Objective Programming , 1993 .

[14]  Yacov Y. Haimes,et al.  Multiobjective Decision Making: Theory and Methodology , 1983 .

[15]  Niels Olhoff,et al.  Optimization Methods in Structural Design , 1982 .

[16]  A. Wierzbicki On the completeness and constructiveness of parametric characterizations to vector optimization problems , 1986 .

[17]  Y. Sawaragi,et al.  A generalized Lagrangian function and multiplier method , 1975 .