Computing the Kreiss Constant of a Matrix

We establish the first globally convergent algorithms for computing the Kreiss constant of a matrix to arbitrary accuracy. We propose three different iterations for continuous-time Kreiss constants and analogues for discrete-time Kreiss constants. With standard eigensolvers, the methods do $\mathcal{O}(n^6)$ work, but we show how this theoretical work complexity can be lowered to $\mathcal{O}(n^4)$ on average and $\mathcal{O}(n^5)$ in the worst case via divide-and-conquer variants. Finally, locally optimal Kreiss constant approximations can be efficiently obtained for large-scale matrices via optimization.

[1]  Robert B. Burckel,et al.  An introduction to classical complex analysis , 1979 .

[2]  M. Overton,et al.  Algorithms for the computation of the pseudospectral radius and the numerical radius of a matrix , 2005 .

[3]  Michael L. Overton,et al.  Second Derivatives for Optimizing Eigenvalues of Symmetric Matrices , 1995, SIAM J. Matrix Anal. Appl..

[4]  Peter Benner,et al.  Numerical Computation of Deflating Subspaces of Skew-Hamiltonian/Hamiltonian Pencils , 2002, SIAM J. Matrix Anal. Appl..

[5]  Peter Benner,et al.  A NOTE ON THE NUMERICAL SOLUTION OF COMPLEX HAMILTONIAN AND SKEW-HAMILTONIAN EIGENVALUE PROBLEMS , 1999 .

[6]  Mark Embree,et al.  Pseudospectra of Matrix Pencils for Transient Analysis of Differential-Algebraic Equations , 2016, SIAM J. Matrix Anal. Appl..

[7]  A. Lewis,et al.  Robust stability and a criss‐cross algorithm for pseudospectra , 2003 .

[8]  Ming Gu,et al.  New Methods for Estimating the Distance to Uncontrollability , 2000, SIAM J. Matrix Anal. Appl..

[9]  Adrian S. Lewis,et al.  Pseudospectral Components and the Distance to Uncontrollability , 2005, SIAM J. Matrix Anal. Appl..

[10]  Michael L. Overton,et al.  Fast Algorithms for the Approximation of the Pseudospectral Abscissa and Pseudospectral Radius of a Matrix , 2011, SIAM J. Matrix Anal. Appl..

[11]  L. Trefethen,et al.  Spectra and Pseudospectra , 2020 .

[12]  L. Trefethen,et al.  On the resolvent condition in the Kreiss Matrix Theorem , 1984 .

[13]  H. Kreiss Über Die Stabilitätsdefinition Für Differenzengleichungen Die Partielle Differentialgleichungen Approximieren , 1962 .

[14]  Tim Mitchell Fast Interpolation-based Globality Certificates for Computing Kreiss Constants and the Distance to Uncontrollability , 2019, ArXiv.

[15]  M. N. Spijker On a conjecture by le Veque and Trefethen related to the kreiss matrix theorem , 1991 .

[16]  Daniel Kressner,et al.  Subspace Methods for Computing the Pseudospectral Abscissa and the Stability Radius , 2014, SIAM J. Matrix Anal. Appl..

[17]  Michael L. Overton,et al.  Measures for Robust Stability and Controllability , 2009 .

[18]  F Rikus Eising,et al.  Between controllable and uncontrollable , 1984 .

[19]  Ming Gu,et al.  Fast Methods for Estimating the Distance to Uncontrollability , 2006, SIAM J. Matrix Anal. Appl..

[20]  Peter Benner,et al.  Hankel-norm approximation of large-scale descriptor systems , 2016, Adv. Comput. Math..

[21]  P. Lancaster On eigenvalues of matrices dependent on a parameter , 1964 .

[22]  Tim Mitchell,et al.  Faster and More Accurate Computation of the ℋ∞ Norm via Optimization , 2017, SIAM J. Sci. Comput..

[23]  Alan J. Laub,et al.  Matrix analysis - for scientists and engineers , 2004 .

[24]  Tim Mitchell,et al.  Extended and Improved Criss-Cross Algorithms for Computing the Spectral Value Set Abscissa and Radius , 2017, SIAM J. Matrix Anal. Appl..

[25]  B. Kågström,et al.  Generalized Schur methods with condition estimators for solving the generalized Sylvester equation , 1989 .