Potential multicarrier and spread spectrum systems for future aviation data links

We examine the potential use of several multicarrier (MC) and spread spectrum (SS) systems for future aviation data links. These techniques are seeing widespread research, development, and deployment in commercial terrestrial settings, and offer many advantages over more traditional approaches. We consider direct-sequence (DS) SS, orthogonal frequency division multiplexing (OFDM), and variations of code-division multiple access (CDMA). A comparison of the characteristics of these techniques is provided, and application to an aeronautical environment is also discussed. This comparison addresses bandwidth efficiency and throughput, performance, security, and implementation issues. Example analytical and simulation results for performance on a two-ray dispersive channel, and in the presence of interference, are provided, and allow some insight into how the size of the list of candidate schemes for future investigation might be reduced

[1]  S. M. Elnoubi A simplified stochastic model for the aeronautical mobile radio channel , 1992, [1992 Proceedings] Vehicular Technology Society 42nd VTS Conference - Frontiers of Technology.

[2]  G. Burke Shaping the National Airspace System for the 21st century , 1997, 16th DASC. AIAA/IEEE Digital Avionics Systems Conference. Reflections to the Future. Proceedings.

[3]  Jeffrey G. Andrews,et al.  Multi-code multicarrier CDMA: performance analysis , 2004, 2004 IEEE International Conference on Communications (IEEE Cat. No.04CH37577).

[4]  David W. Matolak,et al.  Frequency Spectrum for New Aviation Data Links: Initial Study Results , 2004 .

[5]  Khaled Fazel,et al.  Multi-Carrier and Spread Spectrum Systems , 2003 .

[6]  Marvin K. Simon,et al.  Spread Spectrum Communications Handbook , 1994 .

[7]  S. Weinstein,et al.  Data Transmission by Frequency-Division Multiplexing Using the Discrete Fourier Transform , 1971 .

[8]  P. Smith Ipsky: IPV6 for the Aeronautical Telecommunications Network , 2001, 20th DASC. 20th Digital Avionics Systems Conference (Cat. No.01CH37219).

[9]  Roger L. Peterson,et al.  Introduction to Spread Spectrum Communications , 1995 .

[10]  Luc Vandendorpe Multitone spread spectrum multiple access communications system in a multipath Rician fading channel , 1995 .

[11]  Erik Haas,et al.  Aeronautical channel modeling , 2002, IEEE Trans. Veh. Technol..

[12]  D. W. Matolak,et al.  Spectral overlay of direct-sequence spread spectrum in the instrument landing system glidescope band for airborne Internet , 2003 .

[13]  John G. Proakis,et al.  Digital Communications , 1983 .

[14]  Don J. Torrieri Principles of Secure Communication Systems , 1985 .

[15]  S. Kaiser MC-FDMA and MC-TDMA versus MC-CDMA and SS-MC-MA: performance evaluation for fading channels , 1998, 1988 IEEE 5th International Symposium on Spread Spectrum Techniques and Applications - Proceedings. Spread Technology to Africa (Cat. No.98TH8333).

[16]  K. Fazel,et al.  A flexible spread-spectrum multi-carrier multiple-access system for multi-media applications , 1997, Proceedings of 8th International Symposium on Personal, Indoor and Mobile Radio Communications - PIMRC '97.

[17]  A. Viterbi CDMA: Principles of Spread Spectrum Communication , 1995 .

[18]  M. Schnell,et al.  Advanced Airport Data Link - Concept and Demonstrator Implementation for a Modern Airport Data Link , 2003 .

[19]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[20]  Masao Nakagawa,et al.  Performance of orthogonal multicarrier CDMA in a multipath fading channel , 1994, IEEE Trans. Commun..

[21]  S. L. Smith,et al.  Estimation of TDMA and CDMA capacities for an air-to-ground communication system , 1997, 16th DASC. AIAA/IEEE Digital Avionics Systems Conference. Reflections to the Future. Proceedings.

[22]  Heidi Steendam,et al.  The effect of carrier frequency offsets on downlink and uplink MC-DS-CDMA , 2001, IEEE J. Sel. Areas Commun..

[23]  David W. Matolak 3-D outside cell interference factor for an air-ground CDMA "cellular" system , 2000, IEEE Trans. Veh. Technol..

[24]  Laurence B. Milstein,et al.  On the Feasibility of a CDMA Overlay for Personal Communications Networks , 1992, IEEE J. Sel. Areas Commun..

[25]  Laurence B. Milstein,et al.  Performance of multicarrier DS CDMA systems , 1996, IEEE Trans. Commun..

[26]  Witold A. Krzymien,et al.  An asynchronous spread spectrum multi-carrier multiple access system , 1999, Seamless Interconnection for Universal Services. Global Telecommunications Conference. GLOBECOM'99. (Cat. No.99CH37042).

[27]  Ramjee Prasad,et al.  OFDM for Wireless Communications Systems , 2004 .

[28]  T. Wilkinson,et al.  Combined coding for error control and increased robustness to system nonlinearities in OFDM , 1996, Proceedings of Vehicular Technology Conference - VTC.

[29]  Hans-Peter Kuchenbecker,et al.  Minimization of the Intermodulation Distortion of a Nonlinearly Amplified OFDM Signal , 1997, Wirel. Pers. Commun..

[30]  Lie-Liang Yang,et al.  Performance of generalized multicarrier DS-CDMA over Nakagami-m fading channels , 2002, IEEE Trans. Commun..

[31]  Ramjee Prasad,et al.  Overview of multicarrier CDMA , 1997, IEEE Commun. Mag..

[32]  K. Fazel,et al.  Multi-Carrier and Spread Spectrum Systems: Fazel/Spread Spectrum , 2004 .

[33]  Phillip A. Bello,et al.  Aeronautical Channel Characterization , 1973, IEEE Trans. Commun..

[34]  Dov Wulich,et al.  Reduction of peak factor in orthogonal multicarrier modulation by amplitude limiting and coding , 1999, IEEE Trans. Commun..

[35]  J. H. Painter,et al.  Multipath Modeling for Aeronautical Communications , 1973, IEEE Trans. Commun..