Energy Evolution, Stabilization, and Mechanotransducer Properties of Fe3O4 Vortex Nanorings and Nanodisks

Recent reports on spin structures produced in nanomaterials due to confinement of spins imposed by geometrical restrictions are at the center of rising scientific interest. Topological curling magnetic structures (vortices) exhibit unique properties, regarding the energy profile, good colloidal stability in suspensions, manipulation under a low-frequency magnetic field, and torque exertion. The last property provides the potential to mechanically eradicate cancer cells via magnetomechanical actuation using remote ac magnetic fields. Here, we study, theoretically and by micromagnetic simulations, the magnetic energy evolutions for vortex nanosystems, i.e., ${\mathrm{Fe}}_{3}{\mathrm{O}}_{4}$ nanodisks (NDs) and nanorings (NRs). The obtained results for magnetic energy, magnetic susceptibility, and magnetization reversal confirm that the vortex-domain structure in NRs exhibits better stability and avoids agglomeration in solution, owing to the presence of a central hole, whereas the presence of a vortex core in NDs induces magnetic remanence. Although NDs are found to exert slightly higher torques than NRs, this weakness can be compensated for by a small increase (i.e., approximately equals 20%) in the amplitude of the applied field. Our results provide evidence of the magnetic stability of the curling ground states in NRs and open the possibility of applying these systems to magnetomechanical actuation on single cells for therapeutics in biomedicine, such as cancer-cell destruction by low-frequency torque transduction.

[1]  A. Ayesh,et al.  Stoichiometry and Orientation- and Shape-Mediated Switching Field Enhancement of the Heating Properties of Fe3O4 Circular Nanodiscs , 2021 .

[2]  P. Anikeeva,et al.  Magnetic Vortex Nanodiscs Enable Remote Magnetomechanical Neural Stimulation. , 2020, ACS nano.

[3]  A. García-Arribas,et al.  Disk-shaped magnetic particles for cancer therapy , 2020 .

[4]  G. Plaza,et al.  Remote Control of Mechanical Forces via Mitochondrial-Targeted Magnetic Nanospinners for Efficient Cancer Treatment. , 2019, Small.

[5]  Yu Cheng,et al.  Magnetic particles with perpendicular anisotropy for mechanical cancer cell destruction , 2017, Scientific Reports.

[6]  A. García-Arribas,et al.  High-yield fabrication of 60 nm Permalloy nanodiscs in well-defined magnetic vortex state for biomedical applications , 2016, Nanotechnology.

[7]  Bernard Dieny,et al.  Triggering the apoptosis of targeted human renal cancer cells by the vibration of anisotropic magnetic particles attached to the cell membrane. , 2015, Nanoscale.

[8]  M. Radomski,et al.  Magnetic Nanoparticles in Cancer Theranostics , 2015, Theranostics.

[9]  Chenjie Xu,et al.  Emerging translational research on magnetic nanoparticles for regenerative medicine. , 2015, Chemical Society reviews.

[10]  J. Ding,et al.  Magnetic Vortex Nanorings: A New Class of Hyperthermia Agent for Highly Efficient In Vivo Regression of Tumors , 2015, Advanced materials.

[11]  Jun Ding,et al.  Orientation Mediated Enhancement on Magnetic Hyperthermia of Fe3O4 Nanodisc , 2015 .

[12]  Yu Cheng,et al.  Multifunctional nanoparticles for brain tumor imaging and therapy. , 2014, Advanced drug delivery reviews.

[13]  Y. Gaididei,et al.  Effects of surface anisotropy on magnetic vortex core , 2013, 1311.6882.

[14]  B. Diény,et al.  Comparison of dispersion and actuation properties of vortex and synthetic antiferromagnetic particles for biotechnological applications , 2013 .

[15]  J. Ding,et al.  Stable vortex magnetite nanorings colloid: Micromagnetic simulation and experimental demonstration , 2012 .

[16]  Forrest M Kievit,et al.  Magnetite Nanoparticles for Medical MR Imaging. , 2011, Materials today.

[17]  R. Belkhou,et al.  Tailoring magnetic vortices in nanostructures , 2010 .

[18]  Valentyn Novosad,et al.  Biofunctionalized magnetic-vortex microdiscs for targeted cancer-cell destruction. , 2010, Nature materials.

[19]  D. Pierce,et al.  Phase diagram of magnetic nanodisks measured by scanning electron microscopy with polarization analysis , 2010 .

[20]  S. Haas,et al.  Phase diagram of magnetization reversal processes in nanorings , 2009, 0912.0319.

[21]  P. Landeros,et al.  Equilibrium states and vortex domain wall nucleation in ferromagnetic nanotubes , 2009 .

[22]  M. Takano,et al.  Large-scale synthesis of single-crystalline iron oxide magnetic nanorings. , 2008, Journal of the American Chemical Society.

[23]  F. Nizzoli,et al.  Magnetization reversal and soft modes in nanorings : Transitions between onion and vortex states studied by Brillouin light scattering , 2008 .

[24]  Robert Sinclair,et al.  High‐Moment Antiferromagnetic Nanoparticles with Tunable Magnetic Properties , 2008 .

[25]  Donald E Ingber,et al.  Nanomagnetic actuation of receptor-mediated signal transduction. , 2008, Nature nanotechnology.

[26]  Y. Gaididei,et al.  Effective anisotropy of thin nanomagnets: Beyond the surface-anisotropy approach , 2007, 0705.1555.

[27]  J. Escrig,et al.  Phase diagrams of magnetic nanotubes , 2007 .

[28]  J. Escrig,et al.  Stability of magnetic configurations in nanorings , 2006, cond-mat/0608037.

[29]  B. Maranville,et al.  Edge saturation fields and dynamic edge modes in ideal and non-ideal magnetic film edges , 2006, INTERMAG 2006 - IEEE International Magnetics Conference.

[30]  E. Hoffmann,et al.  Swelling‐activated ion channels: functional regulation in cell‐swelling, proliferation and apoptosis , 2006, Acta physiologica.

[31]  G. Rowlands,et al.  Energetics of magnetic ring and disk elements: Uniform versus vortex state , 2006 .

[32]  F. Lang,et al.  Ion Channels in Cell Proliferation and Apoptotic Cell Death , 2005, The Journal of Membrane Biology.

[33]  K. O’Grady,et al.  Preparation of high moment CoFe films with controlled grain size and coercivity , 2005 .

[34]  P. R. Larson,et al.  Spin waves in nickel nanorings of large aspect ratio. , 2005, Physical review letters.

[35]  V. Novosad,et al.  Vortex-state oscillations in soft magnetic cylindrical dots , 2004, cond-mat/0408388.

[36]  H. Bertram,et al.  Critical sizes for ferromagnetic spherical hollow nanoparticles , 2004 .

[37]  R. Cowburn,et al.  Experimental study of the influence of edge roughness on magnetization switching in Permalloy nanostructures , 2004 .

[38]  M. Huth,et al.  Diagram of the states in arrays of iron nanocylinders , 2004 .

[39]  R. Allenspach,et al.  Analytical approach to the single-domain-to-vortex transition in small magnetic disks , 2004 .

[40]  S. Chérif,et al.  Structural and magnetic properties of evaporated Co/Si(100) and Co/glass thin films , 2004 .

[41]  Boris Martinac,et al.  Mechanosensitive ion channels: molecules of mechanotransduction , 2004, Journal of Cell Science.

[42]  C. David,et al.  Switching processes and switching reproducibility in ferromagnetic ring structures , 2004 .

[43]  Jing Shi,et al.  Systematic study of the magnetization reversal in patterned Co and NiFe Nanolines , 2004 .

[44]  K. Tu,et al.  Linear rate of grain growth in thin films during deposition , 2003 .

[45]  Josef Zweck,et al.  Vortex nucleation in submicrometer ferromagnetic disks , 2003 .

[46]  Henry I. Smith,et al.  Metastable states in magnetic nanorings , 2003 .

[47]  H. Hoffmann,et al.  Single domain and vortex state in ferromagnetic circular nanodots , 2002 .

[48]  F. Schäfers,et al.  Exchange coupling in Fe/NiO/Co film studied by soft x-ray resonant magnetic reflectivity , 2002 .

[49]  Werner Scholz,et al.  Transition from single-domain to vortex state in soft magnetic cylindrical nanodots , 2002 .

[50]  J. C. Retamal,et al.  Scaling approach to the magnetic phase diagram of nanosized systems. , 2002, Physical review letters.

[51]  Caroline A. Ross,et al.  Micromagnetic behavior of electrodeposited cylinder arrays , 2002 .

[52]  D. Srolovitz,et al.  Shadowing effects on the microstructure of obliquely deposited films , 2002 .

[53]  Valentyn Novosad,et al.  Magnetization reversal due to vortex nucleation, displacement, and annihilation in submicron ferromagnetic dot arrays , 2001 .

[54]  Valentyn Novosad,et al.  Field evolution of magnetic vortex state in ferromagnetic disks , 2001 .

[55]  U. Ebels,et al.  Flux closure structures in cobalt rings. , 2001, Physical review letters.

[56]  A. Bleloch,et al.  Observation of a bi-domain state and nucleation free switching in mesoscopic ring magnets. , 2001, Physical review letters.

[57]  K. Guslienko,et al.  Evolution and stability of a magnetic vortex in a small cylindrical ferromagnetic particle under applied field , 2000, cond-mat/0012299.

[58]  R. Coehoorn,et al.  In-plane and out-of-plane anisotropic magnetoresistance in Ni80Fe20 thin films , 1997 .

[59]  Ernst Feldtkeller,et al.  Struktur und Energie von Blochlinien in dünnen ferromagnetischen Schichten , 1965 .