Optimization and dynamics of gene-environment networks with intervals
暂无分享,去创建一个
There are a few areas of science and technology which are only as challenging, emerging
and promising as computational biology. This area is looking for its mathematical foundations,
for methods of prediction while guaranteeing robustness, and it is of a rigorous
interdisciplinary nature. In this paper, we deepen and extend the approach of learning
gene-expression patterns in the framework of gene-environment networks by optimization,
especially, generalized semi-infinite optimization (GSIP). With respect to research done previously, we
additionally imply the fact that there are measurement errors in the microarray technology
and in the environmental data likewise; moreover, the effects which exists among the genes and
environmental items can seldom be precisely
quantified. Furthermore, we present the well-established
matrix algebra for our extended model space, and we indicate further new approaches.
Based on data from DNA microarray experiments, nonlinear ordinary differential equations
are extracted by least-squares and, then, time-discretized dynamical systems are derived.
Using a combinatorial algorithm which constructs and observes polyhedra sequences, the
region of parametric stability is detected. This supports the testing of the quality of data
fitting. For the parameter estimation we apply a GSIP problem; we characterize its structural
stability.
Hopefully, this pioneering study will serve and lead to a more realistic understanding and
forecast in biomedicine, food engineering, and biotechnology. The inclusion of error
and imprecision intervals may lead to a more careful evaluation of the experimental data in
the forthcoming years, especially, when the microarray technology becomes more and more refined.