A high-quality Buxus austro-yunnanensis (Buxales) genome provides new insights into karyotype evolution in early eudicots

[1]  M. I. Melaragno,et al.  Mechanisms of structural chromosomal rearrangement formation , 2022, Molecular Cytogenetics.

[2]  D. Sankoff,et al.  Buxus and Tetracentron genomes help resolve eudicot genome history , 2022, Nature Communications.

[3]  Brendan L. O’Connell,et al.  Deeply conserved synteny and the evolution of metazoan chromosomes , 2022, Science advances.

[4]  K. Olsen,et al.  Genome sequencing and transcriptome analyses provide insights into the origin and domestication of water caltrop (Trapa spp., Lythraceae) , 2021, Plant biotechnology journal.

[5]  Jianquan Liu,et al.  The Chloranthus sessilifolius genome provides insight into early diversification of angiosperms , 2021, Nature Communications.

[6]  Stephen A. Smith,et al.  Chloranthus genome provides insights into the early diversification of angiosperms , 2021, Nature Communications.

[7]  Matthew A. Gitzendanner,et al.  Plastid phylogenomic insights into relationships of all flowering plant families , 2021, BMC Biology.

[8]  Bin Chen,et al.  The Melastoma dodecandrum genome and the evolution of Myrtales. , 2021, Journal of genetics and genomics = Yi chuan xue bao.

[9]  Y. van de Peer,et al.  The Euscaphis japonica genome and the evolution of malvids , 2021, The Plant journal : for cell and molecular biology.

[10]  D. Soltis,et al.  Insights into angiosperm evolution, floral development and chemical biosynthesis from the Aristolochia fimbriata genome , 2021, Nature Plants.

[11]  Jing Zhao,et al.  A chromosome-scale genome sequence of pitaya (Hylocereus undatus) provides novel insights into the genome evolution and regulation of betalain biosynthesis , 2021, Horticulture research.

[12]  Felipe A. Simão,et al.  BUSCO Update: Novel and Streamlined Workflows along with Broader and Deeper Phylogenetic Coverage for Scoring of Eukaryotic, Prokaryotic, and Viral Genomes , 2021, Molecular biology and evolution.

[13]  Z. Ning,et al.  A chromosome-level Amaranthus cruentus genome assembly highlights gene family evolution and biosynthetic gene clusters that may underpin the nutritional value of this traditional crop. , 2021, The Plant journal : for cell and molecular biology.

[14]  Ting Li,et al.  WGDI: A user-friendly toolkit for evolutionary analyses of whole-genome duplications and ancestral karyotypes , 2021, bioRxiv.

[15]  Jianguo Zhang,et al.  De novo assembly of a new Olea europaea genome accession using nanopore sequencing , 2021, Horticulture research.

[16]  R. Wing,et al.  The chromosome‐scale reference genome of safflower (Carthamus tinctorius) provides insights into linoleic acid and flavonoid biosynthesis , 2021, Plant biotechnology journal.

[17]  X. Li,et al.  A chromosome‐level genome assembly for the tertiary relict plant Tetracentron sinense oliv. (trochodendraceae) , 2021, Molecular ecology resources.

[18]  Tao Shi,et al.  A reappraisal of the phylogenetic placement of the Aquilegia whole-genome duplication , 2020, Genome biology.

[19]  R. Dixon,et al.  The Tetracentron genome provides insight into the early evolution of eudicots and the formation of vessel elements , 2020, Genome biology.

[20]  C. Feng,et al.  A chromosome‐level genome assembly provides insights into ascorbic acid accumulation and fruit softening in guava (Psidium guajava) , 2020, Plant biotechnology journal.

[21]  A. Lemmon,et al.  The Perfect Storm: Gene Tree Estimation Error, Incomplete Lineage Sorting, and Ancient Gene Flow Explain the Most Recalcitrant Ancient Angiosperm Clade, Malpighiales , 2020, bioRxiv.

[22]  J. Schultz,et al.  Genomes of the Venus Flytrap and Close Relatives Unveil the Roots of Plant Carnivory , 2020, Current Biology.

[23]  Xiyin Wang,et al.  Evolutionary genomics model of chromosome number reduction and B chromosome production , 2020 .

[24]  Qingyong Yang,et al.  The genome of jojoba (Simmondsia chinensis): A taxonomically isolated species that directs wax ester accumulation in its seeds , 2020, Science Advances.

[25]  Guangchuang Yu,et al.  Using ggtree to Visualize Data on Tree‐Like Structures , 2020, Current protocols in bioinformatics.

[26]  C. Davis,et al.  Prickly waterlily and rigid hornwort genomes shed light on early angiosperm evolution , 2020, Nature Plants.

[27]  Charles S. P. Foster,et al.  Phylogenomic Insights into Deep Phylogeny of Angiosperms Based on Broad Nuclear Gene Sampling , 2020, Plant communications.

[28]  Yang Liu,et al.  The water lily genome and the early evolution of flowering plants , 2019, Nature.

[29]  Jiang Hu,et al.  NextPolish: a fast and efficient genome polishing tool for long-read assembly , 2019, Bioinform..

[30]  Xun Xu,et al.  One thousand plant transcriptomes and the phylogenomics of green plants , 2019, Nature.

[31]  P. Hollingsworth,et al.  De novo genome assembly of the endangered Acer yangbiense, a plant species with extremely small populations endemic to Yunnan Province, China , 2019, GigaScience.

[32]  C. Wiklund,et al.  Unprecedented reorganization of holocentric chromosomes provides insights into the enigma of lepidopteran chromosome evolution , 2019, Science Advances.

[33]  Feng-Ping Zhang,et al.  Trochodendron aralioides, the first chromosome-level draft genome in Trochodendrales and a valuable resource for basal eudicot research , 2019, bioRxiv.

[34]  Michael J. Moore,et al.  PGA: a software package for rapid, accurate, and flexible batch annotation of plastomes , 2019, Plant Methods.

[35]  Mario Coiro,et al.  How deep is the conflict between molecular and fossil evidence on the age of angiosperms? , 2019, The New phytologist.

[36]  Haibin Xu,et al.  Liriodendron genome sheds light on angiosperm phylogeny and species–pair differentiation , 2018, Nature Plants.

[37]  Bernardo J. Clavijo,et al.  Genomic architecture and introgression shape a butterfly radiation , 2018, Science.

[38]  Yi Guan,et al.  Two Methods for Mapping and Visualizing Associated Data on Phylogeny Using Ggtree. , 2018, Molecular biology and evolution.

[39]  Richard D. Hayes,et al.  The Aquilegia genome provides insight into adaptive radiation and reveals an extraordinarily polymorphic chromosome with a unique history , 2018, eLife.

[40]  M. Nordborg,et al.  The Aquilegia genome reveals a hybrid origin of core eudicots , 2018, Genome Biology.

[41]  Shujun Ou,et al.  Assessing genome assembly quality using the LTR Assembly Index (LAI) , 2018, Nucleic acids research.

[42]  Wataru Iwasaki,et al.  SonicParanoid: fast, accurate and easy orthology inference , 2018, Bioinform..

[43]  J. Salse,et al.  Improving Nelumbo nucifera genome assemblies using high‐resolution genetic maps and BioNano genome mapping reveals ancient chromosome rearrangements , 2018, The Plant journal : for cell and molecular biology.

[44]  Chao Zhang,et al.  ASTRAL-III: polynomial time species tree reconstruction from partially resolved gene trees , 2018, BMC Bioinformatics.

[45]  Michael S. Barker,et al.  Multiple large-scale gene and genome duplications during the evolution of hexapods , 2018, Proceedings of the National Academy of Sciences.

[46]  Wen-Bin Yu,et al.  GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes , 2018, Genome Biology.

[47]  Michael S. Barker,et al.  Impact of whole-genome duplication events on diversification rates in angiosperms. , 2018, American journal of botany.

[48]  Jia Gu,et al.  fastp: an ultra-fast all-in-one FASTQ preprocessor , 2018, bioRxiv.

[49]  Shujun Ou,et al.  LTR_retriever: A Highly Accurate and Sensitive Program for Identification of Long Terminal Repeat Retrotransposons1[OPEN] , 2017, Plant Physiology.

[50]  P. Peluso,et al.  The Kalanchoë genome provides insights into convergent evolution and building blocks of crassulacean acid metabolism , 2017, Nature Communications.

[51]  Jens Keilwagen,et al.  Combining RNA-seq data and homology-based gene prediction for plants, animals and fungi , 2017, BMC Bioinformatics.

[52]  Jian-Kang Zhu,et al.  A high-quality genome assembly of quinoa provides insights into the molecular basis of salt bladder-based salinity tolerance and the exceptional nutritional value , 2017, Cell Research.

[53]  T. Liu,et al.  An Overlooked Paleotetraploidization in Cucurbitaceae , 2017, Molecular biology and evolution.

[54]  Yan Li,et al.  The Tartary Buckwheat Genome Provides Insights into Rutin Biosynthesis and Abiotic Stress Tolerance. , 2017, Molecular plant.

[55]  Y. Peer,et al.  The evolutionary significance of polyploidy , 2017, Nature Reviews Genetics.

[56]  Hong Ma,et al.  Resolution of deep eudicot phylogeny and their temporal diversification using nuclear genes from transcriptomic and genomic datasets. , 2017, The New phytologist.

[57]  Florent Murat,et al.  Reconstructing the genome of the most recent common ancestor of flowering plants , 2017, Nature Genetics.

[58]  Guangchuang Yu,et al.  ggtree: an r package for visualization and annotation of phylogenetic trees with their covariates and other associated data , 2017 .

[59]  E. M. Friis,et al.  The emergence of core eudicots: new floral evidence from the earliest Late Cretaceous , 2016, Proceedings of the Royal Society B: Biological Sciences.

[60]  Hong Ma,et al.  Phylogenomic analyses of large-scale nuclear genes provide new insights into the evolutionary relationships within the rosids. , 2016, Molecular phylogenetics and evolution.

[61]  Neva C. Durand,et al.  De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds , 2016, Science.

[62]  D. Soltis,et al.  An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV , 2016 .

[63]  J. Salse Ancestors of modern plant crops. , 2016, Current opinion in plant biology.

[64]  Jens Keilwagen,et al.  Using intron position conservation for homology-based gene prediction , 2016, Nucleic acids research.

[65]  Jean-Philippe Vert,et al.  HiC-Pro: an optimized and flexible pipeline for Hi-C data processing , 2015, Genome Biology.

[66]  Michael S. Barker,et al.  Early genome duplications in conifers and other seed plants , 2015, Science Advances.

[67]  H. Quesneville,et al.  Karyotype and Gene Order Evolution from Reconstructed Extinct Ancestors Highlight Contrasts in Genome Plasticity of Modern Rosid Crops , 2015, Genome biology and evolution.

[68]  Yu Lin,et al.  MLGO: phylogeny reconstruction and ancestral inference from gene-order data , 2014, BMC Bioinformatics.

[69]  A. von Haeseler,et al.  IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies , 2014, Molecular biology and evolution.

[70]  Hong Ma,et al.  Resolution of deep angiosperm phylogeny using conserved nuclear genes and estimates of early divergence times , 2014, Nature Communications.

[71]  G. Conant Comparative genomics as a time machine: how relative gene dosage and metabolic requirements shaped the time-dependent resolution of yeast polyploidy. , 2014, Molecular biology and evolution.

[72]  Saurabh Gupta,et al.  The Draft Genome and Transcriptome of Amaranthus hypochondriacus: A C4 Dicot Producing High-Lysine Edible Pseudo-Cereal , 2014, DNA research : an international journal for rapid publication of reports on genes and genomes.

[73]  Richard D. Hayes,et al.  The genome of Eucalyptus grandis , 2014, Nature.

[74]  Charles-Elie Rabier,et al.  Detecting and locating whole genome duplications on a phylogeny: a probabilistic approach. , 2014, Molecular biology and evolution.

[75]  Matthew Fraser,et al.  InterProScan 5: genome-scale protein function classification , 2014, Bioinform..

[76]  Thomas Rosleff Sörensen,et al.  The genome of the recently domesticated crop plant sugar beet (Beta vulgaris) , 2013, Nature.

[77]  Jianying Yuan,et al.  Estimation of genomic characteristics by analyzing k-mer frequency in de novo genome projects , 2013, 1308.2012.

[78]  Douglas G. Scofield,et al.  The Norway spruce genome sequence and conifer genome evolution , 2013, Nature.

[79]  Miranda J. Haus,et al.  Genome of the long-living sacred lotus (Nelumbo nucifera Gaertn.) , 2013, Genome Biology.

[80]  Sebastian Proost,et al.  Gamma paleohexaploidy in the stem lineage of core eudicots: significance for MADS-box gene and species diversification. , 2012, Molecular biology and evolution.

[81]  P. Edger,et al.  Ancient whole genome duplications, novelty and diversification: the WGD Radiation Lag-Time Model. , 2012, Current opinion in plant biology.

[82]  Nils Arrigo,et al.  Rarely successful polyploids and their legacy in plant genomes. , 2012, Current opinion in plant biology.

[83]  Yeting Zhang,et al.  A genome triplication associated with early diversification of the core eudicots , 2012, Genome Biology.

[84]  A. Graphodatsky,et al.  The genome diversity and karyotype evolution of mammals , 2011, Molecular Cytogenetics.

[85]  Peter R. Crane,et al.  Early Flowers and Angiosperm Evolution , 2011 .

[86]  Claude W. dePamphilis,et al.  Ancestral polyploidy in seed plants and angiosperms , 2011, Nature.

[87]  G. Sun,et al.  A eudicot from the Early Cretaceous of China , 2011, Nature.

[88]  Korbinian Strimmer,et al.  Variable importance and model selection by decorrelation , 2010 .

[89]  Xiaobo Zhou,et al.  Reconstruction of the neuromuscular junction connectome , 2010, Bioinform..

[90]  Evgeny M. Zdobnov,et al.  The Newick utilities: high-throughput phylogenetic tree processing in the Unix shell , 2010, Bioinform..

[91]  Haibao Tang,et al.  Insights from the comparison of plant genome sequences. , 2010, Annual review of plant biology.

[92]  Scott Jackson,et al.  Genomic and expression plasticity of polyploidy. , 2010, Current opinion in plant biology.

[93]  Lili Yu,et al.  Phybase: an R package for species tree analysis , 2010, Bioinform..

[94]  Florent Murat,et al.  Improved criteria and comparative genomics tool provide new insights into grass paleogenomics , 2009, Briefings Bioinform..

[95]  Nansheng Chen,et al.  Using RepeatMasker to Identify Repetitive Elements in Genomic Sequences , 2009, Current protocols in bioinformatics.

[96]  C. Bailey,et al.  Plant Systematics: A Phylogenetic Approach , 2008 .

[97]  David Haussler,et al.  Using native and syntenically mapped cDNA alignments to improve de novo gene finding , 2008, Bioinform..

[98]  Jonathan E. Allen,et al.  Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments , 2007, Genome Biology.

[99]  Ziheng Yang PAML 4: phylogenetic analysis by maximum likelihood. , 2007, Molecular biology and evolution.

[100]  K. Hilu,et al.  Phylogeny of basal eudicots: Insights from non-coding and rapidly evolving DNA , 2007 .

[101]  E. M. Friis,et al.  Normapolles plants: a prominent component of the Cretaceous rosid diversification , 2006, Plant Systematics and Evolution.

[102]  Peer Bork,et al.  PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments , 2006, Nucleic Acids Res..

[103]  Steven Salzberg,et al.  TigrScan and GlimmerHMM: two open source ab initio eukaryotic gene-finders , 2004, Bioinform..

[104]  Charles E. Chapple,et al.  Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype , 2004, Nature.

[105]  Stephen M. Mount,et al.  Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. , 2003, Nucleic acids research.

[106]  K. Katoh,et al.  MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. , 2002, Nucleic acids research.

[107]  P. Holland,et al.  Rare genomic changes as a tool for phylogenetics. , 2000, Trends in ecology & evolution.

[108]  N. Grassly,et al.  PSeq-Gen: an application for the Monte Carlo simulation of protein sequence evolution along phylogenetic trees , 1997, Comput. Appl. Biosci..

[109]  S. Karlin,et al.  Prediction of complete gene structures in human genomic DNA. , 1997, Journal of molecular biology.

[110]  N. Friedman,et al.  Trinity : reconstructing a full-length transcriptome without a genome from RNA-Seq data , 2016 .

[111]  Hilde van der Togt,et al.  Publisher's Note , 2003, J. Netw. Comput. Appl..

[112]  J. Lundberg,et al.  An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants : APG II THE ANGIOSPERM PHYLOGENY GROUP * , 2003 .

[113]  G. Benson,et al.  Tandem repeats finder: a program to analyze DNA sequences. , 1999, Nucleic acids research.

[114]  S. B. Hoot,et al.  Patterns of floral evolution in the early diversification of non-magnoliid dicotyledons (eudicots) , 1994 .