Linear Independence of Gabor Systems in Finite Dimensional Vector Spaces
暂无分享,去创建一个
[1] O. H. Mitchell. Note on Determinants of Powers , 1881 .
[2] R. Tennant. Algebra , 1941, Nature.
[3] P. Bello,et al. Measurement of random time-variant linear channels , 1969, IEEE Trans. Inf. Theory.
[4] Peter Lancaster,et al. The theory of matrices , 1969 .
[5] R. Evans,et al. Generalized Vandermonde determinants and roots of unity of prime order , 1976 .
[6] F. R. Gantmakher. The Theory of Matrices , 1984 .
[7] Charles R. Johnson. The Theory of Matrices. Second Edition (with Applications) (Peter Lancaster and Miron Tismenetsky) , 1987 .
[8] Vivek K Goyal,et al. Multiple description transform coding: robustness to erasures using tight frame expansions , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).
[9] Vivek K Goyal,et al. Quantized Frame Expansions with Erasures , 2001 .
[10] Peter G. Casazza,et al. Equal-Norm Tight Frames with Erasures , 2003, Adv. Comput. Math..
[11] Thomas Strohmer,et al. GRASSMANNIAN FRAMES WITH APPLICATIONS TO CODING AND COMMUNICATION , 2003, math/0301135.
[12] V. Paulsen,et al. Optimal frames for erasures , 2004 .
[13] Werner Kozek,et al. Identification of Operators with Bandlimited Symbols , 2005, SIAM J. Math. Anal..
[14] C. Heil. Linear Independence of Finite Gabor Systems , 2006 .