Higher Order Statistics for Texture Analysis and Physical Interpretation of Polarimetric SAR Data

The logarithmic cumulants (log-cumulants for short) of the second and third orders are widely used in the statistical analysis of polarimetric synthetic aperture radar (PolSAR) data. However, both the product model and the finite mixture model may produce the same values of these statistics, which means that the use of these log-cumulants is not enough to determine the statistical model of the data. In this letter, it is demonstrated that the log-cumulants of higher orders can help to distinguish the concept of texture from that of mixture, providing a physical insight into the data statistics. A tool called log-cumulant cube, which helps to visualize this difference, is proposed by considering texture distributions from the Pearson's family. Results on both simulated and real SAR data show that the use of higher order statistics is useful when it comes to the texture analysis of PolSAR data.

[1]  Thomas L. Ainsworth,et al.  On Characterizing High-Resolution SAR Imagery Using Kernel-Based Mixture Speckle Models , 2015, IEEE Geoscience and Remote Sensing Letters.

[2]  Irena Hajnsek,et al.  Inversion of surface parameters from polarimetric SAR , 2003, IEEE Trans. Geosci. Remote. Sens..

[3]  Torbjørn Eltoft,et al.  Application of the Matrix-Variate Mellin Transform to Analysis of Polarimetric Radar Images , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[4]  Torbjørn Eltoft,et al.  Classification With a Non-Gaussian Model for PolSAR Data , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[5]  Yves Delignon,et al.  Etude statistique d'images SAR de la surface de la mer , 1991 .

[6]  Stian Normann Anfinsen,et al.  A Complete Coverage of Log-Cumulant Space in Terms of Distributions for Polarimetric SAR Data , 2011 .

[7]  Lionel Bombrun,et al.  Fisher Distribution for Texture Modeling of Polarimetric SAR Data , 2008, IEEE Geoscience and Remote Sensing Letters.

[8]  Gabriele Moser,et al.  Modeling the Statistics of High Resolution Sar Images Modeling the Statistics of High Resolution Sar Images Modélisation Des Statistiques Des Images Radar (rso) Haute Résolution , 2022 .

[9]  Carlos López-Martínez,et al.  A Physical Analysis of Polarimetric SAR Data Statistical Models , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[10]  Gabriele Moser,et al.  Dictionary-based stochastic expectation-maximization for SAR amplitude probability density function estimation , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[11]  Jean-Marie Nicolas 1 - Introduction aux Statistiques de deuxième espèce : applications des Logs-moments et des Logs-cumulants à l'analyse des lois d'images radar , 2002 .

[12]  K. Ranson,et al.  K-distribution for multi-look processed polarimetric SAR imagery , 1994, Proceedings of IGARSS '94 - 1994 IEEE International Geoscience and Remote Sensing Symposium.

[13]  Stian Normann Anfinsen Statistical Unmixing of SAR Images , 2016 .

[14]  K. Ward Compound representation of high resolution sea clutter , 1980 .

[15]  Torbjørn Eltoft,et al.  Goodness-of-Fit Tests for Multilook Polarimetric Radar Data Based on the Mellin Transform , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[16]  Alejandro C. Frery,et al.  The polarimetric 𝒢 distribution for SAR data analysis , 2005 .