A Review of Image Denoising Methods

Image Denoising is one of the fundamental and very important necessary processes in image processing. It is still a challenging and a hot problem for researchers. Images are one of essential representations in every field like education, agriculture, geosciences, aerospace, surveillance, entertainment etc by means of electronic or print media. Images can get corrupted by noise, there has been a great research effort which made solutions for this problem, a number of methods have been proposed. An overview of various methods is given here after a brief introduction. These methods have been categorized on the bases of techniques used.

[1]  M. Omair Ahmad,et al.  Wavelet-Based Despeckling of Medical Ultrasound Images with the Symmetric Normal Inverse Gaussian Prior , 2007, 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07.

[2]  Yunmei Chen,et al.  Smoothing and Edge Detection by Time-Varying Coupled Nonlinear Diffusion Equations , 2001, Comput. Vis. Image Underst..

[3]  Ronald W. Schafer,et al.  Decision-based median filter using local signal statistics , 1994, Other Conferences.

[4]  Gonzalo R. Arce,et al.  Nonlinear Signal Processing - A Statistical Approach , 2004 .

[5]  Wei Wang,et al.  An Efficient Switching Median Filter Based on Local Outlier Factor , 2011, IEEE Signal Processing Letters.

[6]  Y.-Q. Zhang,et al.  Web shopping expert using new interval type-2 fuzzy reasoning , 2007, Soft Comput..

[7]  R. Chartrand,et al.  Total variation regularisation of images corrupted by non-Gaussian noise using a quasi-Newton method , 2008 .

[8]  M. Sharif,et al.  Hexagonal scale invariant feature transform (H-SIFT) for facial feature extraction , 2015 .

[9]  Vladimir S. Crnojevic,et al.  Impulse noise filter with adaptive MAD-based threshold , 2005, IEEE International Conference on Image Processing 2005.

[10]  Hugues Talbot,et al.  Directional Morphological Filtering , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Muhammad Sharif,et al.  A survey: face recognition techniques under partial occlusion , 2014, Int. Arab J. Inf. Technol..

[12]  Giovanni Ramponi,et al.  Nonlinear fuzzy operators for image processing , 1994, Signal Process..

[13]  H. RABBANI,et al.  WAVELET BASED IMAGE DENOISING BASED ON A MIXTURE OF LAPLACE DISTRIBUTIONS , 2007 .

[14]  Aleksandra Pizurica,et al.  Removal of Correlated Noise by Modeling Spatial Correlations and Interscale Dependencies in the Complex Wavelet Domain , 2007, 2007 IEEE International Conference on Image Processing.

[15]  Chih-Hsing Lin,et al.  Switching Bilateral Filter With a Texture/Noise Detector for Universal Noise Removal , 2010, IEEE Transactions on Image Processing.

[16]  M. Sharif,et al.  3D FACE RECOGNITION USING HORIZONTAL AND VERTICAL MARKED STRIPS , 2011 .

[17]  Guillermo Sapiro,et al.  Robust anisotropic diffusion , 1998, IEEE Trans. Image Process..

[18]  Nor Ashidi Mat Isa,et al.  Cluster-based adaptive fuzzy switching median filter for universal impulse noise reduction , 2010, IEEE Transactions on Consumer Electronics.

[19]  Hani Hagras,et al.  Embedded Type-2 FLC for Real-Time Speed Control of Marine and Traction Diesel Engines , 2005, The 14th IEEE International Conference on Fuzzy Systems, 2005. FUZZ '05..

[20]  Eero P. Simoncelli,et al.  Image denoising via adjustment of wavelet coefficient magnitude correlation , 2000, Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101).

[21]  Yehoshua Y. Zeevi,et al.  Variational denoising of partly textured images by spatially varying constraints , 2006, IEEE Transactions on Image Processing.

[22]  Luis T. Aguilar,et al.  Intelligent Control of an Autonomous Mobile Robot using Type-2 Fuzzy Logic , 2006, Eng. Lett..

[23]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  Guoliang Fan,et al.  Image denoising using a local contextual hidden Markov model in the wavelet domain , 2001, IEEE Signal Processing Letters.

[25]  Hong-Ye Gao,et al.  Wavelet Shrinkage Denoising Using the Non-Negative Garrote , 1998 .

[26]  樊养余,et al.  Fast lane recognition based on morphological multi-structure element model , 2009 .

[27]  Muhammad Sharif,et al.  Brain Image Compression: A Brief Survey , 2013 .

[28]  Mussarat Yasmin,et al.  Use of Low Level Features for Content Based Image Retrieval: Survey , 2013 .

[29]  Hani Hagras,et al.  A hierarchical type-2 fuzzy logic control architecture for autonomous mobile robots , 2004, IEEE Transactions on Fuzzy Systems.

[30]  Charles K. Chui,et al.  A universal noise removal algorithm with an impulse detector , 2005, IEEE Transactions on Image Processing.

[31]  Muhammad Sharif,et al.  Brain Image Representation and Rendering: A Survey , 2012 .

[32]  M. Raza,et al.  Brain Image Reconstruction: A Short Survey , 2012 .

[33]  Mudassar Raza,et al.  FACE RECOGNITION USING EDGE INFORMATION AND DCT , 2015 .

[34]  Eero P. Simoncelli,et al.  Image Modeling and Denoising With Orientation-Adapted Gaussian Scale Mixtures , 2008, IEEE Transactions on Image Processing.

[35]  Tamer F. Rabie,et al.  Robust estimation approach for blind denoising , 2005, IEEE Transactions on Image Processing.

[36]  H. Wu,et al.  Space variant median filters for the restoration of impulse noise corrupted images , 2001 .

[37]  Stephen Marshall,et al.  Genetic algorithm optimization of multidimensional grayscale soft morphological filters with applications in film archive restoration , 2003, IEEE Trans. Circuits Syst. Video Technol..

[38]  Muhammad Sharif,et al.  Content Based Image Retrieval: Survey , 2012 .

[39]  Etienne E. Kerre,et al.  Fuzzy random impulse noise reduction method , 2007, Fuzzy Sets Syst..

[40]  Il Kyu Eom,et al.  Wavelet-based denoising with nearly arbitrarily shaped windows , 2004, IEEE Signal Process. Lett..

[41]  Jianning Xu A generalized discrete morphological skeleton transform with multiple structuring elements for the extraction of structural shape components , 2003, IEEE Trans. Image Process..

[42]  M. Omair Ahmad,et al.  Bayesian Wavelet-Based Image Denoising Using the Gauss–Hermite Expansion , 2008, IEEE Transactions on Image Processing.

[43]  Sajjad Mohsin,et al.  Real Time Face Detection Using Skin Detection (Block Approach) , 2011 .

[44]  David Ebenezer,et al.  A New Fast and Efficient Decision-Based Algorithm for Removal of High-Density Impulse Noises , 2007, IEEE Signal Processing Letters.

[45]  Mohamed-Jalal Fadili,et al.  Bayesian denoising based on the MAP estimation in wavelet-domain using Bessel K form prior , 2005, IEEE International Conference on Image Processing 2005.

[46]  Dimitrios Charalampidis Steerable Weighted Median Filters , 2010, IEEE Transactions on Image Processing.

[47]  Aleksandra Pizurica,et al.  Estimating the probability of the presence of a signal of interest in multiresolution single- and multiband image denoising , 2006, IEEE Transactions on Image Processing.

[48]  Raymond H. Chan,et al.  Salt-and-pepper noise removal by median-type noise detectors and detail-preserving regularization , 2005, IEEE Transactions on Image Processing.

[49]  Yehoshua Y. Zeevi,et al.  Image enhancement and denoising by complex diffusion processes , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[50]  Tao Chen,et al.  Application of partition-based median type filters for suppressing noise in images , 2001, IEEE Trans. Image Process..

[51]  D. Ebenezer,et al.  A New and Efficient Algorithm for the Removal of High Density Salt and Pepper Noise in Images and Videos , 2010, 2010 Second International Conference on Computer Modeling and Simulation.

[52]  Muhammad Sharif,et al.  USING NOSE HEURISTICS FOR EFFICIENT FACE RECOGNITION , 2011 .

[53]  Tao Chen,et al.  Impulse noise removal by multi-state median filtering , 2000, 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100).

[54]  J. Astola,et al.  Fundamentals of Nonlinear Digital Filtering , 1997 .

[55]  Alin Achim,et al.  Novel Bayesian multiscale method for speckle removal in medical ultrasound images , 2001, IEEE Transactions on Medical Imaging.

[56]  Muhammad Sharif,et al.  Framework for the Comparison of Classifiers for Medical Image Segmentation with Transform and Moment based features , 2013 .

[57]  Pinar Çivicioglu Using Uncorrupted Neighborhoods of the Pixels for Impulsive Noise Suppression With ANFIS , 2007, IEEE Transactions on Image Processing.

[58]  Hans-Peter Kriegel,et al.  LOF: identifying density-based local outliers , 2000, SIGMOD '00.

[59]  Q. Naeem,et al.  Improving audio data quality and compression , 2008, 2008 4th International Conference on Emerging Technologies.

[60]  Q. Henry Wu,et al.  Optimal soft morphological filter for periodic noise removal using a particle swarm optimiser with passive congregation , 2007, Signal Process..

[61]  Umesh Ghanekar,et al.  Switching median filter: advanced boundary discriminative noise detection algorithm , 2011 .

[62]  M. Sharif,et al.  Face Recognition Based on Facial Features , 2012 .

[63]  Muhammad Sharif,et al.  Lossless Compression Method for Medical Image Sequences Using Super-Spatial Structure Prediction and Inter-frame Coding , 2012 .

[64]  Aleksandra Pizurica,et al.  Image Denoising Using Mixtures of Projected Gaussian Scale Mixtures , 2009, IEEE Transactions on Image Processing.

[65]  Saeed Gazor,et al.  Image denoising employing local mixture models in sparse domains , 2010 .

[66]  Mudassar Raza,et al.  Face Detection and Recognition Through Hexagonal Image Processing , 2012 .

[67]  Kai-Kuang Ma,et al.  A switching median filter with boundary discriminative noise detection for extremely corrupted images , 2006, IEEE Trans. Image Process..

[68]  Guillermo Sapiro,et al.  Anisotropic diffusion of multivalued images with applications to color filtering , 1996, IEEE Trans. Image Process..

[69]  Dan Schonfeld,et al.  Theoretical Foundations of Spatially-Variant Mathematical Morphology Part II: Gray-Level Images , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[70]  M. Sharif,et al.  Face Recognition for Disguised Variations Using Gabor Feature Extraction , 2011 .

[71]  S. Mallat A wavelet tour of signal processing , 1998 .

[72]  Muhammad Sharif,et al.  Intelligent Image Retrieval Techniques: A Survey , 2014 .

[73]  Isma Irum,et al.  Content Based Image Retrieval by Shape , Color and Relevance Feedback , 2013 .

[74]  T. Lei,et al.  Noise gradient reduction based on morphological dual operators , 2011 .

[75]  Yiqiu Dong,et al.  A New Directional Weighted Median Filter for Removal of Random-Valued Impulse Noise , 2007, IEEE Signal Processing Letters.

[76]  Mila Nikolova,et al.  Regularizing Flows for Constrained Matrix-Valued Images , 2004, Journal of Mathematical Imaging and Vision.

[77]  Nor Ashidi Mat Isa,et al.  Noise Adaptive Fuzzy Switching Median Filter for Salt-and-Pepper Noise Reduction , 2010, IEEE Signal Processing Letters.

[78]  I. Selesnick,et al.  Bivariate shrinkage with local variance estimation , 2002, IEEE Signal Processing Letters.

[79]  Jamal Hussain Shah,et al.  Face recognition using adaptive margin fisher's criterion and linear discriminant analysis (AMFC-LDA) , 2014, Int. Arab J. Inf. Technol..

[80]  M. Emin Yüksel,et al.  A simple neuro-fuzzy impulse detector for efficient blur reduction of impulse noise removal operators for digital images , 2004, IEEE Transactions on Fuzzy Systems.

[81]  Stéphane Mallat,et al.  Multifrequency channel decompositions of images and wavelet models , 1989, IEEE Trans. Acoust. Speech Signal Process..

[82]  Kai-Kuang Ma,et al.  Noise adaptive soft-switching median filter , 2001, IEEE Trans. Image Process..

[83]  Jeffrey Ng,et al.  A steerable complex wavelet construction and its application to image denoising , 2005, IEEE Transactions on Image Processing.

[84]  Fuyuan Peng,et al.  Adaptive fuzzy switching filter for images corrupted by impulse noise , 2004, ICCCAS 2004.

[85]  Moncef Gabbouj,et al.  Weighted median filters: a tutorial , 1996 .

[86]  Carl-Fredrik Westin,et al.  Oriented Speckle Reducing Anisotropic Diffusion , 2007, IEEE Transactions on Image Processing.

[87]  Muhammad Sharif,et al.  Content Based Image Retrieval Using Combined Features of Shape, Color and Relevance Feedback , 2013, KSII Trans. Internet Inf. Syst..

[88]  Muhammad Sharif,et al.  An Efficient Content Based Image Retrieval using EI Classification and Color Features , 2014 .

[89]  Syed Muhammad Anwar,et al.  Feature Extraction and Classification of Epilepsy in Different Seizure Types: A Survey , 2014 .

[90]  Naif Alajlan,et al.  Detail preserving impulsive noise removal , 2004, Signal Process. Image Commun..

[91]  Mila Nikolova,et al.  Minimizers of Cost-Functions Involving Nonsmooth Data-Fidelity Terms. Application to the Processing of Outliers , 2002, SIAM J. Numer. Anal..

[92]  Kenneth E. Barner,et al.  Fuzzy Rank LUM Filters , 2006, IEEE Transactions on Image Processing.

[93]  Andrew P. Witkin,et al.  Scale-Space Filtering , 1983, IJCAI.

[94]  Muhammad Irfan Sharif,et al.  FACIAL FEATURE DETECTION AND RECOGNITION FOR VARYING POSES , 2015 .

[95]  Mudassar Raza,et al.  Image Compression: A Survey , 2014 .

[96]  Martin Vetterli,et al.  Spatially adaptive wavelet thresholding with context modeling for image denoising , 1998, Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269).

[97]  Piotr S. Windyga,et al.  Fast impulsive noise removal , 2001, IEEE Trans. Image Process..

[98]  M. Emin Yüksel,et al.  A hybrid neuro-fuzzy filter for edge preserving restoration of images corrupted by impulse noise , 2006, IEEE Trans. Image Process..

[99]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[100]  H. Wu,et al.  Adaptive impulse detection using center-weighted median filters , 2001, IEEE Signal Processing Letters.

[101]  M.T. Rahman,et al.  Face recognition using Gabor Filters , 2008, 2008 11th International Conference on Computer and Information Technology.

[102]  Jamal Hussain Shah,et al.  Face recognition across pose variation and the 3S problem , 2014 .

[103]  Mussarat Yasmin,et al.  Pathological Brain Image Segmentation and Classification: A Survey , 2014 .

[104]  F. Russo,et al.  Fuzzy systems in instrumentation: fuzzy signal processing , 1995, Proceedings of 1995 IEEE Instrumentation and Measurement Technology Conference - IMTC '95.

[105]  Aria Abubakar,et al.  A multiplicative regularization approach for deblurring problems , 2004, IEEE Transactions on Image Processing.

[106]  M. Kazubek,et al.  Wavelet domain image denoising by thresholding and Wiener filtering , 2003, IEEE Signal Processing Letters.

[107]  Raghu Krishnapuram,et al.  A robust approach to image enhancement based on fuzzy logic , 1997, IEEE Trans. Image Process..

[108]  Edward H. Adelson,et al.  The Design and Use of Steerable Filters , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[109]  Lina J. Karam,et al.  Wavelet-based adaptive image denoising with edge preservation , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[110]  S. Mohsin,et al.  Neural Networks in Medical Imaging Applications: A Survey , 2013 .

[111]  Fabrizio Russo Recent advances in fuzzy techniques for image enhancement , 1998, IEEE Trans. Instrum. Meas..

[112]  Thomas Serre,et al.  Real-Time Face Detection , 2001 .

[113]  Onur G. Guleryuz,et al.  Weighted Averaging for Denoising With Overcomplete Dictionaries , 2007, IEEE Transactions on Image Processing.

[114]  M. E. Yuksel A hybrid neuro-fuzzy filter for edge preserving restoration of images corrupted by impulse noise , 2006, IEEE Transactions on Image Processing.

[115]  Juan Shi,et al.  Graph Cuts for Curvature Based Image Denoising , 2011, IEEE Transactions on Image Processing.

[116]  Etienne E. Kerre,et al.  A fuzzy impulse noise detection and reduction method , 2006, IEEE Transactions on Image Processing.

[117]  K. R. Subramanian,et al.  Efficient wavelet-based image denoising algorithm , 2001 .

[118]  S Nishida,et al.  Signal separation of background EEG and spike by using morphological filter. , 1999, Medical engineering & physics.

[119]  Mostafa Kaveh,et al.  Fourth-order partial differential equations for noise removal , 2000, IEEE Trans. Image Process..

[120]  Mohamed Cheriet,et al.  Robust NL-Means Filter With Optimal Pixel-Wise Smoothing Parameter for Statistical Image Denoising , 2009, IEEE Transactions on Signal Processing.

[121]  Robert D. Nowak,et al.  Wavelet-based image estimation: an empirical Bayes approach using Jeffrey's noninformative prior , 2001, IEEE Trans. Image Process..

[122]  David Zhang,et al.  Impulse noise detection and removal using fuzzy techniques , 1997 .

[123]  Mohamed-Jalal Fadili,et al.  Analytical form for a Bayesian wavelet estimator of images using the Bessel K form densities , 2005, IEEE Transactions on Image Processing.

[124]  Chen Tang,et al.  PDE-Based Random-Valued Impulse Noise Removal Based on New Class of Controlling Functions , 2011, IEEE Transactions on Image Processing.

[125]  Mudassar Raza,et al.  Achieving Accuracy in Early Stage Tumor Identification Systems based on Image Segmentation and 3D Structure Analysis , 2011 .

[126]  Wilson S. Geisler,et al.  Image quality assessment based on a degradation model , 2000, IEEE Trans. Image Process..

[127]  Muhammad Sharif,et al.  Single Image Face Recognition Using Laplacian of Gaussian and Discrete Cosine Transforms , 2012, Int. Arab J. Inf. Technol..

[128]  Erkan Besdok,et al.  Using an adaptive neuro-fuzzy inference system-based interpolant for impulsive noise suppression from highly distorted images , 2005, Fuzzy Sets Syst..

[129]  Jyh-Charn Liu,et al.  Selective removal of impulse noise based on homogeneity level information , 2003, IEEE Trans. Image Process..

[130]  M. Sharif,et al.  Illumination normalization preprocessing for face recognition , 2010, 2010 The 2nd Conference on Environmental Science and Information Application Technology.

[131]  Xiangchu Feng,et al.  Variational Models for Fusion and Denoising of Multifocus Images , 2008, IEEE Signal Processing Letters.

[132]  S. Liu Adaptive scalar and vector median filtering of noisy colour images based on noise estimation , 2011 .

[133]  Chen Hu,et al.  An iterative procedure for removing random-valued impulse noise , 2004, IEEE Signal Processing Letters.

[134]  Martin Vetterli,et al.  Adaptive wavelet thresholding for image denoising and compression , 2000, IEEE Trans. Image Process..

[135]  Wangmeng Zuo,et al.  A Generalized Accelerated Proximal Gradient Approach for Total-Variation-Based Image Restoration , 2011, IEEE Transactions on Image Processing.

[136]  Muhammad Sharif,et al.  IMAGE RETRIEVAL TECHNIQUES USING SHAPES OF OBJECTS: A SURVEY , 2013 .

[137]  Benoit M. Dawant,et al.  Topological median filters , 2002, IEEE Trans. Image Process..

[138]  Muhammad Sharif,et al.  Enhanced SVD Based Face Recognition , 2012 .

[139]  M. Sharif Microscopic Feature Extraction Method , 2013 .

[140]  Jamal Hussain Shah,et al.  Analysis of face recognition under varying facial expression: a survey , 2013, Int. Arab J. Inf. Technol..

[141]  P. Lions,et al.  Image selective smoothing and edge detection by nonlinear diffusion. II , 1992 .

[142]  Mohamed-Jalal Fadili,et al.  Bayesian denoising in the wavelet-domain using an analytical approximate /spl alpha/-stable prior , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[143]  M. Sharif,et al.  Morphological Techniques for Medical Images: A Review , 2012 .

[144]  Martin J. Wainwright,et al.  Adaptive Wiener denoising using a Gaussian scale mixture model in the wavelet domain , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[145]  Eero P. Simoncelli,et al.  Image Denoising using Gaussian Scale Mixtures in the Wavelet Domain , 2002 .

[146]  V Saradhadevi,et al.  A Novel TwoStage Impulse Noise Removal Technique based on Neural Networks and Fuzzy Decision , 2011 .

[147]  Richard Baraniuk,et al.  The Dual-tree Complex Wavelet Transform , 2007 .

[148]  Rachid Deriche,et al.  Vector-valued image regularization with PDE's: a common framework for different applications , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[149]  Javier Portilla,et al.  Image Restoration Using Space-Variant Gaussian Scale Mixtures in Overcomplete Pyramids , 2008, IEEE Transactions on Image Processing.

[150]  Dominik Sankowski,et al.  Noise adaptive switching median-based filter for impulse noise removal from extremely corrupted images , 2011 .

[151]  Hisham Othman,et al.  Hybrid hidden Markov model for face recognition , 2000, 4th IEEE Southwest Symposium on Image Analysis and Interpretation.

[152]  Simon X. Yang,et al.  Nonlinear noise cancellation for image with adaptive neuro-fuzzy inference systems , 2005 .

[153]  Bani K. Mallick,et al.  A Bayesian transformation model for wavelet shrinkage , 2003, IEEE Trans. Image Process..

[154]  M. Sharif,et al.  Robust Face Recognition Technique under Varying Illumination , 2015 .

[155]  Shu-Mei Guo,et al.  Genetic-based fuzzy image filter and its application to image processing , 2005, IEEE Trans. Syst. Man Cybern. Part B.

[156]  Onur G. Guleryuz,et al.  Nonlinear approximation based image recovery using adaptive sparse reconstructions and iterated denoising-part II: adaptive algorithms , 2006, IEEE Transactions on Image Processing.

[157]  Nick G. Kingsbury,et al.  Image Denoising Using Derotated Complex Wavelet Coefficients , 2008, IEEE Transactions on Image Processing.

[158]  Mudassar Raza,et al.  Data Reductionality Technique for Face Recognition , 2011 .

[159]  David L. Donoho,et al.  De-noising by soft-thresholding , 1995, IEEE Trans. Inf. Theory.

[160]  Ruola Ning,et al.  Image denoising based on wavelets and multifractals for singularity detection , 2005, IEEE Transactions on Image Processing.

[161]  Jamal Hussain Shah,et al.  A Survey: Linear and Nonlinear PCA Based Face Recognition Techniques , 2013, Int. Arab J. Inf. Technol..

[162]  Rabia Jafri,et al.  A Survey of Face Recognition Techniques , 2009, J. Inf. Process. Syst..

[163]  Dan Schonfeld,et al.  Theoretical Foundations of Spatially-Variant Mathematical Morphology Part I: Binary Images , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.