On the Estimation of Markov Random Field Parameters

We examine the histogram method for estimating the parameters associated with a Markov random field. This method relies on the estimation of the local interaction sums from histogram data. We derive an estimator for these quantities that is optimal in a well-defined sense. Furthermore, we show that the final step of the histogram method, the solution of a least-squares problem, can be done substantially faster than one might expect if no equation culling is used. We also examine the use of weighted least-squares and see that this seems to lead to better estimates even with small amounts of data.

[1]  J. Besag Spatial Interaction and the Statistical Analysis of Lattice Systems , 1974 .

[2]  K. F. Gauss,et al.  Theoria combinationis observationum erroribus minimis obnoxiae , 1823 .

[3]  Brian R. Calder,et al.  Improvements in MRF parameter estimation , 1995 .

[4]  Levent Onural,et al.  On a Parameter Estimation Method for Gibbs-Markov Random Fields , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Anil K. Jain,et al.  Markov Random Field Texture Models , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Haluk Derin,et al.  Modeling and Segmentation of Noisy and Textured Images Using Gibbs Random Fields , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .