Reduced bacterial adhesion on ceramics used for arthroplasty applications

[1]  S. Spriano,et al.  How do wettability, zeta potential and hydroxylation degree affect the biological response of biomaterials? , 2017, Materials science & engineering. C, Materials for biological applications.

[2]  B. Springer,et al.  Treatment of Periprosthetic Joint Infection Using Antimicrobials: Dilute Povidone-Iodine Lavage , 2017, Journal of bone and joint infection.

[3]  S. Kurtz,et al.  Corrosion Damage and Wear Mechanisms in Long-Term Retrieved CoCr Femoral Components for Total Knee Arthroplasty. , 2016, The Journal of arthroplasty.

[4]  N. Indrawattana,et al.  Mechanisms of Antimicrobial Resistance in ESKAPE Pathogens , 2016, BioMed research international.

[5]  M. G. Grusovin,et al.  The Microbiologic Profile Associated with Peri-Implantitis in Humans: A Systematic Review. , 2016, The International journal of oral & maxillofacial implants.

[6]  L. Visai,et al.  The effect of silver or gallium doped titanium against the multidrug resistant Acinetobacter baumannii. , 2016, Biomaterials.

[7]  F. García-Godoy,et al.  Surface properties of resin-based composite materials and biofilm formation: A review of the current literature. , 2015, American journal of dentistry.

[8]  K. Bohinc,et al.  The impact of material surface roughness and temperature on the adhesion of Legionella pneumophila to contact surfaces , 2015, International journal of environmental health research.

[9]  Cynthia S Crowson,et al.  Prevalence of Total Hip and Knee Replacement in the United States. , 2015, The Journal of bone and joint surgery. American volume.

[10]  Shin-Yoon Kim,et al.  Do Alumina Matrix Composite Bearings Decrease Hip Noises and Bearing Fractures at a Minimum of 5 Years After THA? , 2015, Clinical orthopaedics and related research.

[11]  X. Yang,et al.  Ceramic-on-ceramic versus ceramic-on-polyethylene bearing surfaces in total hip arthroplasty. , 2015, Orthopedics.

[12]  A. Cochis,et al.  Biofilm formation on titanium implants counteracted by grafting gallium and silver ions. , 2015, Journal of biomedical materials research. Part A.

[13]  J. Parvizi,et al.  Effect of biofilms on recalcitrance of staphylococcal joint infection to antibiotic treatment. , 2015, The Journal of infectious diseases.

[14]  F. Pei,et al.  Is a Ceramic-on-Ceramic Bearing Really Superior to Ceramic-on-Polyethylene for Primary Total Hip Arthroplasty? A Systematic Review and Meta-Analysis of Randomised Controlled Trials , 2015, Hip international : the journal of clinical and experimental research on hip pathology and therapy.

[15]  L. B. Solomon,et al.  CORR Insights: The Otto Aufranc Award: Modifiable versus Nonmodifiable Risk Factors for Infection After Hip Arthroplasty , 2015 .

[16]  J. Bosco,et al.  The Otto Aufranc Award: Modifiable versus Nonmodifiable Risk Factors for Infection After Hip Arthroplasty , 2015, Clinical orthopaedics and related research.

[17]  Spomenka Kobe,et al.  The influence of surface modification on bacterial adhesion to titanium-based substrates. , 2015, ACS applied materials & interfaces.

[18]  A. Cochis,et al.  Bioactive glass functionalized with alkaline phosphatase stimulates bone extracellular matrix deposition and calcification in vitro , 2014 .

[19]  Hideyuki Sakoda,et al.  Effect of surface roughness of biomaterials on Staphylococcus epidermidis adhesion , 2014, BMC Microbiology.

[20]  Evelyn N. Wang,et al.  Effect of hydrocarbon adsorption on the wettability of rare earth oxide ceramics , 2014 .

[21]  A. Wengler,et al.  Hip and knee replacement in Germany and the USA: analysis of individual inpatient data from German and US hospitals for the years 2005 to 2011. , 2014, Deutsches Arzteblatt international.

[22]  A. Geissler,et al.  Utilization rates of knee-arthroplasty in OECD countries. , 2014, Osteoarthritis and cartilage.

[23]  J. Vazquez,et al.  Development and antimicrobial susceptibility studies of in vitro monomicrobial and polymicrobial biofilm models with Aspergillus fumigatus and Pseudomonas aeruginosa , 2014, BMC Microbiology.

[24]  A. Cochis,et al.  The Biofilm Formation onto Implants and Prosthetic Materials May Be Contrasted Using Gallium (3+) , 2013 .

[25]  N. Høiby,et al.  Prosthesis Infections after Orthopedic Joint Replacement: The Possible Role of Bacterial Biofilms , 2013, Orthopedic reviews.

[26]  C. Cooper,et al.  Epidemiology and burden of osteoarthritis. , 2013, British medical bulletin.

[27]  M. Forghani,et al.  Effect of Surface Roughness and Materials Composition , 2012 .

[28]  Fernando J. Monteiro,et al.  Infection of orthopedic implants with emphasis on bacterial adhesion process and techniques used in studying bacterial-material interactions , 2012, Biomatter.

[29]  R. Bader,et al.  Ceramic Femoral Components in Total Knee Arthroplasty - Two Year Follow-Up Results of an International Prospective Multi-Centre Study , 2012, The open orthopaedics journal.

[30]  Henny C van der Mei,et al.  The influence of Co–Cr and UHMWPE particles on infection persistence: An in vivo study in mice , 2012, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[31]  A. Lombardi,et al.  Causes of Failure of Ceramic-on-Ceramic and Metal-on-Metal Hip Arthroplasties , 2012, Clinical orthopaedics and related research.

[32]  M. Stiesch,et al.  Comparative analysis of long-term biofilm formation on metal and ceramic brackets. , 2011, The Angle orthodontist.

[33]  M. Wimmer,et al.  Polyethylene and metal wear particles: characteristics and biological effects , 2011, Seminars in Immunopathology.

[34]  Steven M. Kurtz,et al.  The Epidemiology of Revision Total Knee Arthroplasty in the United States , 2009, Clinical orthopaedics and related research.

[35]  Hans-Curt Flemming,et al.  The EPS Matrix: The “House of Biofilm Cells” , 2007, Journal of bacteriology.

[36]  S D Heintze,et al.  Surface roughness and gloss of dental materials as a function of force and polishing time in vitro. , 2006, Dental materials : official publication of the Academy of Dental Materials.

[37]  K. Yamaguchi,et al.  Temperature- and deflection- dependences of orthodontic force with Ni-Ti wires. , 2003, Dental materials journal.

[38]  Antonio Carrassi,et al.  Bacterial colonization of zirconia ceramic surfaces: an in vitro and in vivo study. , 2002, The International Journal of Oral and Maxillofacial Implants.

[39]  S. Garoff,et al.  Contact Line Structure and Dynamics on Surfaces with Contact Angle Hysteresis , 1997 .

[40]  P Lambrechts,et al.  Comparison of surface roughness of oral hard materials to the threshold surface roughness for bacterial plaque retention: a review of the literature. , 1997, Dental materials : official publication of the Academy of Dental Materials.

[41]  S. Fare',et al.  The effect of surface roughness on early in vivo plaque colonization on titanium. , 1997, Journal of periodontology.

[42]  K. Balani,et al.  Adhesion force of staphylococcus aureus on various biomaterial surfaces. , 2017, Journal of the mechanical behavior of biomedical materials.

[43]  M. Forghani,et al.  Effect of Surface Roughness and Materials Composition on Biofilm Formation , 2012 .

[44]  N. Vilaboa,et al.  In vitro biocompatibility and bacterial adhesion of physico-chemically modified Ti6Al4V surface by means of UV irradiation. , 2009, Acta biomaterialia.

[45]  Kevin Ong,et al.  The epidemiology of revision total hip arthroplasty in the United States. , 2009, The Journal of bone and joint surgery. American volume.