Entropy maximization and the busy period of some single-server vacation models

In this paper, information theoretic methodology for system modeling is applied to investigate the probability density function of the busy period in M/G/1 vacation models operating under the N-, T- and D-policies. The information about the density function is limited to a few mean value constraints (usually the first moments). By using the maximum entropy methodology one obtains the least biased probability density function satisfying the system's constraints. The analysis of the three controllable M/G/1 queueing models provides a parallel numerical study of the solution obtained via the maximum entropy approach versus “classical” solutions. The maximum entropy analysis of a continuous system descriptor (like the busy period) enriches the current body of literature which, in most cases, reduces to discrete queueing measures (such as the number of customers in the system).

[1]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[2]  L. Tadj,et al.  Maximum entropy solution to a quorum queueing system , 2001 .

[3]  U. Yechiali,et al.  Utilization of idle time in an M/G/1 queueing system Management Science 22 , 1975 .

[4]  W. Pearn,et al.  Maximum entropy analysis to the N policy M/G/1 queueing system with a removable server , 2002 .

[5]  Ernest Koenigsberg Maximum Entropy Condition in Queueing Theory , 1987 .

[6]  A maximum entropy method for inverting Laplace transforms of probability density functions , 1995 .

[7]  Leonard Kleinrock,et al.  Queueing Systems: Volume I-Theory , 1975 .

[8]  Jesus R. Artalejo,et al.  Information theoretic approximations for theM/G/1 retrial queue , 1994, Acta Informatica.

[9]  S. Wittevrongel,et al.  Queueing Systems , 2019, Introduction to Stochastic Processes and Simulation.

[10]  William H. Press,et al.  Book-Review - Numerical Recipes in Pascal - the Art of Scientific Computing , 1989 .

[11]  Tsuneo Yoshikawa Basic optimization methods of redundant manipulators , 1996 .

[12]  E. Gelenbe Product-form queueing networks with negative and positive customers , 1991 .

[13]  Daniel P. Heyman,et al.  The T-Policy for the M/G/1 Queue , 1977 .

[14]  B. T. Doshi,et al.  Queueing systems with vacations — A survey , 1986, Queueing Syst. Theory Appl..

[15]  Demetres D. Kouvatsos,et al.  Entropy maximisation and queueing network models , 1994, Ann. Oper. Res..

[16]  V. Balachandran,et al.  Comment on “Solving the 'Marketing Mix' Problem using Geometric Programming” , 1975 .

[17]  Demetres D. Kouvatsos,et al.  A maximum entropy analysis of the M/G/1 and G/M/1 queueing systems at equilibrium , 1983, Acta Informatica.

[18]  Erol Gelenbe,et al.  G-networks: a unifying model for neural and queueing networks , 1993, MASCOTS.

[19]  William H. Press,et al.  Numerical Recipes in Fortran 77 , 1992 .

[20]  M. Yadin,et al.  Queueing Systems with a Removable Service Station , 1963 .

[21]  Panagiotis Kasteridis,et al.  On the d-policy for the m/g/1 queue , 2001 .

[22]  B. D. Sivazlian,et al.  Distributions and first moments of the busy and idle periods in controllable M/G/1 Queueing Models with Simple and Dyadic Policies , 1995 .

[23]  Jesús R. Artalejo,et al.  On the M/G/1 queue with D-policy , 2001 .

[24]  John E. Shore,et al.  Information theoretic approximations for M/G/1 and G/G/1 queuing systems , 1982, Acta Informatica.

[25]  Ward Whitt,et al.  Numerical Inversion of Laplace Transforms of Probability Distributions , 1995, INFORMS J. Comput..

[26]  J.R. Artalejo,et al.  G-networks: A versatile approach for work removal in queueing networks , 2000, Eur. J. Oper. Res..

[27]  Jacques Teghem,et al.  Control of the service process in a queueing system , 1986 .

[28]  E. Gelenbe,et al.  A queue with server of walking type (autonomous service) , 1978, Advances in Applied Probability.