Statistical Simulation

This paper considers simulation models in applied science from a statistical perspective, points out potential statistical pitfalls in calibration, and opportunities for the use of statistical regularities to reduce computational requirements and provide a foundation for systematic testing and evaluation. Sections of the paper deal with the impact of numerical approximation on the statistical properties of estimators, the use of simulation methods to assist statistical inference, and the use of nested multinomial approximations for computational tractability and robustness.

[1]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[2]  Masafumi Akahira,et al.  Non-regular statistical estimation , 1995 .

[3]  N. S. Cardell,et al.  Measuring the societal impacts of automobile downsizing , 1980 .

[4]  Christian Gourieroux,et al.  Simulation-based econometric methods , 1996 .

[5]  Xiaohong Chen,et al.  Efficient Estimation of Models with Conditional Moment Restrictions Containing Unknown Functions , 2003 .

[6]  H. White Some Asymptotic Results for Learning in Single Hidden-Layer Feedforward Network Models , 1989 .

[7]  P. Hall,et al.  Martingale Limit Theory and its Application. , 1984 .

[8]  W. Newey,et al.  Large sample estimation and hypothesis testing , 1986 .

[9]  Paul A. Ruud,et al.  Extensions of estimation methods using the EM algorithm , 1991 .

[10]  D. M. Titterington,et al.  Neural Networks: A Review from a Statistical Perspective , 1994 .

[11]  David F. Hendry,et al.  On the Formulation of Empirical-models in Dynamic Econometrics , 1982 .

[12]  Edward L. Ionides,et al.  Statistical Analysis of Cell Motion , 2001 .

[13]  C. Manski,et al.  On the Use of Simulated Frequencies to Approximate Choice Probabilities , 1981 .

[14]  D. McFadden,et al.  ESTIMATION BY SIMULATION , 1994 .

[15]  Keunkwan Ryu Group Duration Analysis of the Proportional Hazard Model: Minimum Chi-squared Estimators and Specification Tests , 1994 .

[16]  C. L. Chiang ON REGULAR BEST ASYMPTOTICALLY NORMAL ESTIMATES , 1956 .

[17]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[18]  D. Pollard New Ways to Prove Central Limit Theorems , 1985, Econometric Theory.

[19]  K. Train Halton Sequences for Mixed Logit , 2000 .

[20]  J. Boyd,et al.  THE EFFECT OF FUEL ECONOMY STANDARDS ON THE U.S. AUTOMOTIVE MARKET: AN HEDONIC DEMAND ANALYSIS , 1980 .

[21]  M. Montgomery,et al.  Child health, breast-feeding, and survival in Malaysia: a random-effects logit approach. , 1986, Journal of the American Statistical Association.

[22]  Paul A. Ruud,et al.  Simulation of multivariate normal rectangle probabilities and their derivatives theoretical and computational results , 1996 .

[23]  Joel H. Steckel,et al.  A Heterogeneous Conditional Logit Model of Choice , 1988 .

[24]  P. J. Huber The behavior of maximum likelihood estimates under nonstandard conditions , 1967 .

[25]  D. McFadden,et al.  MIXED MNL MODELS FOR DISCRETE RESPONSE , 2000 .

[26]  James J. Heckman,et al.  ECONOMETRIC ANALYSIS OF LONGITUDINAL DATA , 1986 .

[27]  Lung-fei Lee,et al.  Switching Regression Models with Imperfect Sample Separation Information-With an Application on Cartel Stability , 1984 .

[28]  The Asymptotic Distribution of Estimators with Overlapping Simulation Draws , 2015 .

[29]  Richard E. Quandt,et al.  The Estimation of Structural Shifts by Switching Regressions , 1973 .

[30]  Chandra R. Bhat,et al.  ACCOMMODATING FLEXIBLE SUBSTITUTION PATTERNS IN MULTI-DIMENSIONAL CHOICE MODELING: FORMULATION AND APPLICATION TO TRAVEL MODE AND DEPARTURE TIME CHOICE , 1998 .

[31]  D. McFadden A Method of Simulated Moments for Estimation of Discrete Response Models Without Numerical Integration , 1989 .

[32]  D. McFadden Econometric analysis of qualitative response models , 1984 .

[33]  D. McFadden Econometric Models of Probabilistic Choice , 1981 .

[34]  J. J. Beggs,et al.  Urban travel demand , 1973 .

[35]  C. Gouriéroux,et al.  Chapter 44 Testing non-nested hypotheses , 1994 .

[36]  U. Faber Asymptotics In Statistics Some Basic Concepts , 2016 .

[37]  Spiridon Penev,et al.  On shape-preserving probabilistic wavelet approximators , 1997 .