Adaptive Mesh Refinement Based on a Posteriori Error Estimation

Adaptive Mesh Refinement Based on a Posteriori Error Estimation Martin Juhas Master of Applied Science Graduate Department of Aerospace Engineering University of Toronto 2014 This thesis describes the application of a h-refinement, adjoint-based, a posteriori error estimation strategy with a solution-driven, block-based adaptive mesh refinement (AMR), finite-volume scheme to the solution of advection-diffusion problems in two dimension. Error-based criteria following from the adjoint-weighted computable correction of a functional, error in the computable correction for the functional, using either primal, dual, or both error formulations, and/or the total estimated error in the functional are all used to direct the mesh refinement in the block-based AMR scheme. The test cases considered here for the advection-diffusion equation illustrate the ability of the error-based AMR criteria to improve the accuracy of integrated functionals where physics-based AMR criteria may fail. The performance of the adjoint-based refinement criteria is compared with both gradient-based and uniform mesh refinement strategies.

[1]  W. Coirier An Adaptively-Refined, Cartesian, Cell-Based Scheme for the Euler and Navier-Stokes Equations. Ph.D. Thesis - Michigan Univ. , 1994 .

[2]  Clinton P. T. Groth,et al.  International Journal of Computational Fluid Dynamics a Parallel Adaptive Mesh Refinement Algorithm for Predicting Turbulent Non-premixed Combusting Flows a Parallel Adaptive Mesh Refinement Algorithm for Predicting Turbulent Non-premixed Combusting Flows , 2022 .

[3]  Ch. Hirsch,et al.  Fundamentals Of Computational Fluid Dynamics , 2016 .

[4]  D. Venditti,et al.  Anisotropic grid adaptation for functional outputs: application to two-dimensional viscous flows , 2003 .

[5]  Michael J. Aftosmis,et al.  Adjoint sensitivity computations for an embedded-boundary Cartesian mesh method , 2008, J. Comput. Phys..

[6]  Marsha Berger,et al.  Data structures for adaptive grid generation , 1986 .

[7]  Tamara G. Kolda,et al.  An overview of the Trilinos project , 2005, TOMS.

[8]  Timothy J. Barth,et al.  The design and application of upwind schemes on unstructured meshes , 1989 .

[9]  P. Colella,et al.  Local adaptive mesh refinement for shock hydrodynamics , 1989 .

[10]  R. LeVeque,et al.  An Adaptive Cartesian Mesh Algorithm for the Euler Equations in Arbitrary Geometries , 1989 .

[11]  Lucian Ivan,et al.  Development of High-order CENO Finite-volume Schemes with Block-based Adaptive Mesh Refinement (AMR) , 2011 .

[12]  Mathias Wintzer,et al.  Adjoint-Based Adaptive Mesh Refinement for Complex Geometries , 2008 .

[13]  M. Berger,et al.  Adaptive mesh refinement for hyperbolic partial differential equations , 1982 .

[14]  David L. Darmofal,et al.  Anisotropic Adaptation for Functional Outputs of Viscous Flow Simulations , 2003 .

[15]  V. Venkatakrishnan On the accuracy of limiters and convergence to steady state solutions , 1993 .

[16]  D. L. De Zeeuw,et al.  Three-dimensional mhd simulation of coronal mass ejections , 2000 .

[17]  I. Bohachevsky,et al.  Finite difference method for numerical computation of discontinuous solutions of the equations of fluid dynamics , 1959 .

[18]  D. Venditti,et al.  Adjoint error estimation and grid adaptation for functional outputs: application to quasi-one-dimensional flow , 2000 .

[19]  Ralf Hartmann,et al.  Error Estimation and Adaptive Mesh Refinement for Aerodynamic Flows , 2010 .

[20]  James J. Quirk,et al.  A Parallel Adaptive Mesh Refinement Algorithm , 1993 .

[21]  Clinton P. T. Groth,et al.  A parallel solution - adaptive method for three-dimensional turbulent non-premixed combusting flows , 2010, J. Comput. Phys..

[22]  M. Berger,et al.  Robust and efficient Cartesian mesh generation for component-based geometry , 1998 .

[23]  Philip L. Roe,et al.  Adaptive-mesh algorithms for computational fluid dynamics , 1993 .

[24]  Rolf Rannacher,et al.  Duality-based adaptivity in the hp-finite element method , 2003, J. Num. Math..

[25]  D. D. Zeeuw,et al.  Global three‐dimensional MHD simulation of a space weather event: CME formation, interplanetary propagation, and interaction with the magnetosphere , 2000 .

[26]  D. Venditti,et al.  Grid adaptation for functional outputs: application to two-dimensional inviscid flows , 2002 .

[27]  Henri Paillere,et al.  A wave-model-based refinement criterion for adaptive-grid computation of compressible flows , 1992 .

[28]  Scott M. Murman,et al.  Applications of Space-Filling-Curves to Cartesian Methods for CFD , 2004 .

[29]  Scott Northrup,et al.  Parallel Implicit Adaptive Mesh Refinement Scheme for Body-Fitted Multi-Block Mesh , 2005 .

[30]  J. Sachdev,et al.  A parallel solution-adaptive scheme for multi-phase core flows in solid propellant rocket motors , 2005 .

[31]  D. D. Zeeuw,et al.  An adaptively refined Cartesian mesh solver for the Euler equations , 1993 .

[32]  Weeratunge Malalasekera,et al.  An introduction to computational fluid dynamics - the finite volume method , 2007 .

[33]  Michael J. Aftosmis,et al.  Adjoint Error Estimation and Adaptive Refinement for Embedded-Boundary Cartesian Meshes , 2007 .

[34]  Scott A. Northrup A Parallel Implicit Adaptive Mesh Refinement Algorithm for Predicting Unsteady Fully-compressible Reactive Flows , 2014 .

[35]  Scott Northrup,et al.  Parallel solution-adaptive method for two dimensional non-premixed combusting flows , 2011 .

[36]  Gediminas Adomavicius,et al.  A Parallel Multilevel Method for Adaptively Refined Cartesian Grids with Embedded Boundaries , 2000 .

[37]  Quentin F. Stout,et al.  A parallel solution-adaptive scheme for ideal magnetohydrodynamics , 1999 .

[38]  Rolf Rannacher,et al.  A Priori Error Estimates for the Finite Element Discretization of Elliptic Parameter Identification Problems with Pointwise Measurements , 2005, SIAM J. Control. Optim..

[39]  Darren L. de Zeeuw A quadtree-based adaptively-refined Cartesian-grid algorithm for solution of the Euler equations , 1993 .

[40]  Marsha J. Berger,et al.  AMR on the CM-2 , 1994 .