Cavity size in reaction field theory

The optimum size of the cavity accommodating a solute in the reaction field theory of solvation is considered by empirical calibration of the results of electronic structure calculations against experiment. To isolate the long range electrostatic free energy contributions treated by reaction field theory from the many other short range contributions not explicitly considered, computational results are compared to experimental determinations of conformational free energy differences in polar solutes having two or more stable or metastable isomers. When the cavity shape is defined by a solute electronic isodensity contour, it is found that the best overall agreement with experiment is obtained with a cavity size corresponding to the 0.001 a.u. contour.

[1]  N. Jonathan,et al.  Rotational Isomers of the 1‐Fluoro‐2‐haloethanes , 1968 .

[2]  Toomas Tamm,et al.  Multicavity reaction field method for the solvent effect description in flexible molecular systems , 1993 .

[3]  Modesto Orozco,et al.  Solvent Effects in Chloroform Solution: Parametrization of the MST/SCRF Continuum Model , 1996 .

[4]  Jean-Louis Rivail,et al.  Énergie libre d’une distribution de charges électriques séparée d’un milieu diélectrique infini par une cavité ellipsoïdale quelconque, application à l’étude de la solvation des molécules , 1982 .

[5]  S. C. Tucker,et al.  A Continuum Solvation Model Including Electrostriction: Application to the Anisole Hydrolysis Reaction in Supercritical Water , 1996 .

[6]  K. Tanabe Calculation of infrared band intensities and determination of energy differences of rotational isomers of 1,2-dichloro-, 1,2-dibromo- and 1-chloro-2-bromoethane , 1972 .

[7]  F. J. Luque,et al.  Extension of MST/SCRF method to organic solvents: Ab initio and semiempirical parametrization for neutral solutes in CCl4 , 1996, J. Comput. Chem..

[8]  Donald G. Truhlar,et al.  MODEL FOR AQUEOUS SOLVATION BASED ON CLASS IV ATOMIC CHARGES AND FIRST SOLVATION SHELL EFFECTS , 1996 .

[9]  D. Chipman The solvation reaction field for a hydrogen atom in a dielectric continuum , 1996 .

[10]  J. Rice,et al.  A study of solvent effects on hyperpolarizabilities: The reaction field model applied to acetonitrile , 1993 .

[11]  George P. Ford,et al.  The optimized ellisoidal cavity and its application to the self‐consistent reaction field calculation of hydration energies of cations and neutral molecules , 1992 .

[12]  Mati Karelson,et al.  Theoretical treatment of solvent effects on electronic spectroscopy , 1992 .

[13]  Kurt V. Mikkelsen,et al.  Self‐consistent reaction field calculations of photoelectron binding energies for solvated molecules , 1989 .

[14]  R. J. Abraham,et al.  Rotational isomerism—XIII : Rotational isomerism in furfuraldehyde , 1972 .

[15]  L. Timofeeva,et al.  Application of the configuration interaction method for quantum-chemical calculations of solvation effects , 1993 .

[16]  B. Honig,et al.  New Model for Calculation of Solvation Free Energies: Correction of Self-Consistent Reaction Field Continuum Dielectric Theory for Short-Range Hydrogen-Bonding Effects , 1996 .

[17]  Cheng Chang,et al.  Properties of atoms in molecules: atomic volumes , 1987 .

[18]  Karl Jug,et al.  Solvation effects in SINDO1: Application to organic molecules , 1997 .

[19]  Jacopo Tomasi,et al.  Analytical derivatives for molecular solutes. I. Hartree–Fock energy first derivatives with respect to external parameters in the polarizable continuum model , 1994 .

[20]  F M Richards,et al.  Areas, volumes, packing and protein structure. , 1977, Annual review of biophysics and bioengineering.

[21]  Mark S. Gordon,et al.  General atomic and molecular electronic structure system , 1993, J. Comput. Chem..

[22]  Andreas Klamt,et al.  Treatment of the outlying charge in continuum solvation models , 1996 .

[23]  H. Berendsen,et al.  The electric potential of a macromolecule in a solvent: A fundamental approach , 1991 .

[24]  L. Pauling The Nature Of The Chemical Bond , 1939 .

[25]  Jacopo Tomasi,et al.  Molecular Interactions in Solution: An Overview of Methods Based on Continuous Distributions of the Solvent , 1994 .

[26]  D. E. Brown,et al.  A gas phase electron diffraction study of the molecular structure of 1,1,2-trifluoroethane, assisted by calculation of the vibrational amplitudes for 1,2-difluoroethane from spectroscopic data , 1979 .

[27]  Jacopo Tomasi,et al.  Continuum solvation models: A new approach to the problem of solute’s charge distribution and cavity boundaries , 1997 .

[28]  David L. Beveridge,et al.  Free energy of a charge distribution in a spheroidal cavity in a polarizable dielectric continuum , 1976 .

[29]  A. Klamt,et al.  COSMO : a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient , 1993 .

[30]  Shoshana J. Wodak,et al.  Development and parametrization of continuum solvent models. I. Models based on the boundary element method , 1996 .

[31]  Donald G. Truhlar,et al.  Generalized born fragment charge model for solvation effects as a function of reaction coordinate , 1989 .

[32]  Jacopo Tomasi,et al.  A new definition of cavities for the computation of solvation free energies by the polarizable continuum model , 1997 .

[33]  J. Tomasi,et al.  Ab initio study of solvated molecules: A new implementation of the polarizable continuum model , 1996 .

[34]  Yi Luo,et al.  Unique determination of the cavity radius in Onsager reaction field theory , 1997 .

[35]  G. G. Hall,et al.  The development of quantum mechanical solvent effect models. Macroscopic electrostatic contributions , 1976 .

[36]  W. H. Henneker,et al.  Molecular Charge Distributions and Chemical Binding , 1967 .

[37]  R. J. Abraham,et al.  Rotational isomerism. Part XV. The solvent dependence of the conformational equilibria in trans-1,2- and trans-1,4-dihalogenocyclohexanes , 1973 .

[38]  C. Cramer,et al.  General parameterized SCF model for free energies of solvation in aqueous solution , 1991 .

[39]  C. P. Smyth,et al.  Dipole Moment and Restricted Rotation in Four Fluorochloroethanes, 1,1,2-Trichloroethane and Chloromethyl Methyl Ether1,2 , 1955 .

[40]  P. Hazendonk,et al.  Solvent Effects on Internal Rotational Barriers in Furfural. NMR Measurements and ab-Initio Molecular Orbital Methods Using Continuum Models , 1997 .

[41]  J. Tomasi,et al.  Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects , 1981 .

[42]  Jinfan Huang,et al.  Conformational analysis. 14. The dihaloethanes ClCH2CH2F, BrCH2CH2F, and BrCH2CH2Cl. Investigations of the molecular structures, rotameric compositions, anti and gauche energy and entropy differences, and barriers hindering internal rotation by gas-phase electron diffraction augmented by rotational , 1990 .

[43]  Randy J. Zauhar,et al.  Computing the electric potential of biomolecules: Application of a new method of molecular surface triangulation , 1990 .

[44]  Daniel M. Chipman,et al.  Charge penetration in dielectric models of solvation , 1997 .

[45]  B. Honig,et al.  Accurate First Principles Calculation of Molecular Charge Distributions and Solvation Energies from Ab Initio Quantum Mechanics and Continuum Dielectric Theory , 1994 .

[46]  M. Levitt,et al.  Theoretical studies of enzymic reactions: dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. , 1976, Journal of molecular biology.

[47]  W. C. Still,et al.  Semianalytical treatment of solvation for molecular mechanics and dynamics , 1990 .

[48]  K. Wiberg,et al.  Solvent Effects. 5. Influence of Cavity Shape, Truncation of Electrostatics, and Electron Correlation on ab Initio Reaction Field Calculations , 1996 .

[49]  Kenneth B. Wiberg,et al.  Ab initio calculation of molar volumes: Comparison with experiment and use in solvation models , 1995, J. Comput. Chem..

[50]  M. Born Volumen und Hydratationswärme der Ionen , 1920 .

[51]  H. Dreizler,et al.  Rotationsspektren in angeregten Schwingungszuständen und Torsionspotential von Furfurol , 1966 .

[52]  M. Aguilar,et al.  Solute-solvent interactions. a simple procedure for constructing the solvent cavity for retaining a molecular solute , 1989 .

[53]  L. Onsager Electric Moments of Molecules in Liquids , 1936 .

[54]  J. Bentley Behavior of Electron Density Functions in Molecular Interactions , 1998 .

[55]  S. Yomosa Nonlinear Schrödinger Equation on the Molecular Complex in Solution –Towards a Biophysics– , 1973 .

[56]  D. Chandler,et al.  Statistical mechanics of small chain molecules in liquids. I. Effects of liquid packing on conformational structures , 1978 .

[57]  Barry Honig,et al.  Reevaluation of the Born model of ion hydration , 1985 .

[58]  D. Rinaldi,et al.  Fast geometry optimizationin self‐cosistent reaction field computations on solvated molecules , 1992 .

[59]  Kenneth B. Wiberg,et al.  Solvent effects. 1. The mediation of electrostatic effects by solvents , 1991 .

[60]  M. Zerner,et al.  ON THE N-PI BLUE SHIFT ACCOMPANYING SOLVATION , 1990 .

[61]  T. S. Little,et al.  Conformational Analysis, Barriers to Internal Rotation, ab initio Calculations, and Vibrational Assignment of 1-Chloro-2-fluoroethane , 1991 .

[62]  Steven W. Rick,et al.  The Aqueous Solvation of Water: A Comparison of Continuum Methods with Molecular Dynamics , 1994 .

[63]  A. Bondi van der Waals Volumes and Radii , 1964 .

[64]  F. J. Luque,et al.  Optimization of the cavity size for ab initio MST-SCRF calculations of monovalent ions , 1994 .

[65]  J. Pople,et al.  Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules , 1972 .

[66]  R. J. Abraham,et al.  Conformational Analysis Part 26—An Objective Method for Determining Conformer Populations and Coupling Constants in NMR Spectroscopy , 1996 .

[67]  Orlando Tapia,et al.  Self-consistent reaction field theory of solvent effects , 1975 .

[68]  J. Warwicker,et al.  Calculation of the electric potential in the active site cleft due to alpha-helix dipoles. , 1982, Journal of molecular biology.

[69]  D. Beglov,et al.  Atomic Radii for Continuum Electrostatics Calculations Based on Molecular Dynamics Free Energy Simulations , 1997 .

[70]  Kenneth B. Wiberg,et al.  Amides. 3. Experimental and Theoretical Studies of the Effect of the Medium on the Rotational Barriers for N,N-Dimethylformamide and N,N-Dimethylacetamide , 1995 .

[71]  M. Huron,et al.  Calculation of the interaction energy of one molecule with its whole surrounding. II. Method of calculating electrostatic energy , 1974 .

[72]  Timothy Clark,et al.  Efficient diffuse function‐augmented basis sets for anion calculations. III. The 3‐21+G basis set for first‐row elements, Li–F , 1983 .

[73]  C. Coulson,et al.  Environmental effects on atomic energy levels , 1961 .

[74]  L. Pratt,et al.  Reaction field spectral shifts with semiempirical molecular orbital theory , 1997 .

[75]  G. Karlstroem Electronic structure of hydrofluoride(1-) and hydrochloride(1-) in condensed phases studied by a CASSCF dielectric cavity model , 1989 .

[76]  J. McDouall,et al.  Assessment of the Langevin dipoles solvation model for Hartree-Fock wavefunctions , 1996 .

[77]  D. Beveridge,et al.  A MODIFICATION OF THE GENERALIZED BORN THEORY FOR IMPROVED ESTIMATES OF SOLVATION ENERGIES AND PK SHIFTS , 1998 .

[78]  Anna Tempczyk,et al.  Electrostatic contributions to solvation energies: comparison of free energy perturbation and continuum calculations , 1991 .

[79]  Arieh Warshel,et al.  Microscopic models for quantum mechanical calculations of chemical processes in solutions: LD/AMPAC and SCAAS/AMPAC calculations of solvation energies , 1992 .

[80]  M. Newton Role of ab initio calculations in elucidating properties of hydrated and ammoniated electrons , 1975 .

[81]  B. Lee,et al.  The interpretation of protein structures: estimation of static accessibility. , 1971, Journal of molecular biology.

[82]  Yoshio Inoue,et al.  General parameterization of a reaction field theory combined with the boundary element method , 1994, J. Comput. Chem..

[83]  M. Newton,et al.  Solvent Reorganization and Donor/Acceptor Coupling in Electron-Transfer Processes: Self-Consistent Reaction Field Theory and ab Initio Applications , 1995 .

[84]  Jacopo Tomasi,et al.  Electrostatic interaction of a solute with a continuum. Improved description of the cavity and of the surface cavity bound charge distribution. , 1987 .

[85]  Thanh N. Truong,et al.  Optimized atomic radii for quantum dielectric continuum solvation models , 1995 .

[86]  David A. Case,et al.  Incorporating solvation effects into density functional electronic structure calculations , 1994 .

[87]  D. Dixon,et al.  Conformational analysis of 1,2-dihaloethanes: a comparison of theoretical methods , 1992 .

[88]  J. Pople,et al.  Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions , 1980 .

[89]  P. C. Hariharan,et al.  The influence of polarization functions on molecular orbital hydrogenation energies , 1973 .

[90]  D. Rinaldi,et al.  Liquid state quantum chemistry : A cavity model , 1985 .

[91]  D. Chandler,et al.  Dielectric solvation dynamics of molecules of arbitrary shape and charge distribution , 1998 .

[92]  John Bentley,et al.  VOLUME POLARIZATION IN REACTION FIELD THEORY , 1998 .

[93]  R. Bader,et al.  Determination of the charge distribution of methane by a method of density constraints , 1970 .

[94]  J. Tomasi,et al.  ASPECTS OF ELECTROPHILIC BROMINATION OF ALKENES IN SOLUTION. THEORETICAL CALCULATION OF ATOMIC CHARGES IN BROMONIUM IONS , 1994 .

[95]  Bruce J. Berne,et al.  Dynamical Fluctuating Charge Force Fields: The Aqueous Solvation of Amides , 1996 .

[96]  D. D. Yue,et al.  Theory of Electric Polarization , 1974 .

[97]  Timothy Clark,et al.  A numerical self-consistent reaction field (SCRF) model for ground and excited states in NDDO-based methods , 1993 .

[98]  M. Zerner,et al.  A quantitative assessment of the merostabilization energy of carbon-centered radicals , 1986 .

[99]  Michael J. Frisch,et al.  Self‐consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets , 1984 .

[100]  George P. Ford,et al.  Molecular-orbital theory of a solute in a continuum with an arbitrarily shaped boundary represented by finite surface elements , 1992 .

[101]  A. Warshel,et al.  A STRINGENT TEST OF THE CAVITY CONCEPT IN CONTINUUM DIELECTRICS , 1997 .

[102]  Joel S. Bader,et al.  Solvation and reorganization energies in polarizable molecular and continuum solvents , 1997 .

[103]  M. Murcko,et al.  Solvent Effects on 1,2-Dihaloethane Gauche/Trans Ratios , 1995 .

[104]  Pt Vanduijnen,et al.  SUCCESS AND PITFALLS OF THE DIELECTRIC CONTINUUM MODEL IN QUANTUM-CHEMICAL CALCULATIONS , 1993 .

[105]  T. S. Little,et al.  Asymmetric torsional potential function and conformational analysis of furfural by far infrared and Raman spectroscopy , 1989 .

[106]  J. Kirkwood,et al.  Theory of Solutions of Molecules Containing Widely Separated Charges with Special Application to Zwitterions , 1934 .

[107]  Harold A. Scheraga,et al.  A combined iterative and boundary-element approach for solution of the nonlinear Poisson-Boltzmann equation , 1992 .

[108]  Alexander A. Rashin,et al.  A simple method for the calculation of hydration enthalpies of polar molecules with arbitrary shapes , 1987 .