Visualization of patents and papers in terahertz technology: a comparative study

Terahertz technology is one of the most promising research areas in the 21st century. In this work, we intend to compare the research status quo on terahertz technology between 1990 and 2010 using knowledge domain visualization techniques. Our data consists of 633 patents retrieved from Aureka management platform and 10,344 journal articles indexed in the ISI web of knowledge. Our analysis is a combination of two information visualization tools for analysis, Aureka and CiteSpace. Aureka is allowed for the analysis of patents filed/granted each year, priority country, inventors, assignees, citation counting, and cluster analysis, while networks of co-authors, countries, institutions, document co-citation networks and document co-citation clusters, are performed by CiteSpace. This research provides a comprehensive domain visualization map of innovation and knowledge in the area of terahertz technology. Our result shows that Aureka and CiteSpace are two promising visualization approaches to analyze patents and papers in any given field.

[1]  Yasar Tonta,et al.  Mapping the structure and evolution of electronic publishing as a research field using co-citation analysis , 2010, ELPUB.

[2]  Ajay Nahata,et al.  A wideband coherent terahertz spectroscopy system using optical rectification and electro‐optic sampling , 1996 .

[3]  Qing Hu,et al.  3.4-THz quantum cascade laser based on longitudinal-optical-phonon scattering for depopulation , 2003 .

[4]  Yoo-Jin Han,et al.  Measuring industrial knowledge stocks with patents and papers , 2007, J. Informetrics.

[5]  Ludo Waltman,et al.  Text mining and visualization using VOSviewer , 2011, ArXiv.

[6]  M. Nuss,et al.  Imaging with terahertz waves. , 1995, Optics letters.

[7]  Chaomei Chen,et al.  Searching for intellectual turning points: Progressive knowledge domain visualization , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[8]  Xiang Zhang,et al.  Terahertz optical rectification from a nonlinear organic crystal , 1992 .

[9]  V. Altuzar,et al.  Atmospheric pollution profiles in Mexico City in two different seasons , 2003 .

[10]  P. Siegel Terahertz Technology , 2001 .

[11]  A. Bennett,et al.  Patent data mining: a tool for accelerating HIV vaccine innovation. , 2011, Vaccine.

[12]  Masayoshi Tonouchi,et al.  Cutting-edge terahertz technology , 2007 .

[13]  Christian Sternitzke,et al.  Patents and publications as sources of novel and inventive knowledge , 2009, Scientometrics.

[14]  Richard Seymour,et al.  Platinum Group Metals Patent Analysis and Mapping , 2008 .

[15]  Wai Lam Chan,et al.  Imaging with terahertz radiation , 2007 .

[16]  M. Koch,et al.  Terahertz spectroscopy and imaging – Modern techniques and applications , 2011 .

[17]  M. Meyer Does science push technology? Patents citing scientific literature , 2000 .

[18]  D. Mittleman,et al.  T-ray imaging , 1996 .

[19]  魏屹东,et al.  Scientometrics , 2018, Encyclopedia of Big Data.

[20]  M. Tani,et al.  Detection of up to 20 THz with a low-temperature-grown GaAs photoconductive antenna gated with 15 fs light pulses , 2000 .

[21]  David H. Auston,et al.  Generation and detection of millimeter waves by picosecond photoconductivity , 1983 .

[22]  Sastry Kalpana,et al.  Research and Development Perspectives of Transgenic Cotton: Evidence from Patent Landscape Studies , 2011 .

[23]  Andrew J. Nelson Measuring Knowledge Spillovers: What Patents, Licenses and Publications Reveal About Innovation Diffusion , 2009 .

[24]  Xiaojun Yuan,et al.  The thematic and citation landscape of Data and Knowledge Engineering , 2008, Data Knowl. Eng..

[25]  Kevin W. Boyack,et al.  Domain visualization using VxInsight® for science and technology management , 2002, J. Assoc. Inf. Sci. Technol..

[26]  M. Nuss,et al.  Subpicosecond photoconducting dipole antennas , 1988 .

[27]  A. Davies,et al.  Terahertz semiconductor-heterostructure lasers , 2002, Summaries of Papers Presented at the Lasers and Electro-Optics. CLEO '02. Technical Diges.

[28]  Gwyn P. Williams FAR-IR'THz radiation from the Jefferson Laboratory, energy recovered linac, free electron laser , 2002 .

[29]  X. Zhang,et al.  Free‐space electro‐optic sampling of terahertz beams , 1995 .

[30]  K. Cheung,et al.  Picosecond photoconducting Hertzian dipoles , 1984 .

[31]  Fei Shi,et al.  Patent activity on water pollution and treatment in China—a scientometric perspective , 2010, Scientometrics.

[32]  Ju Wang,et al.  Visualizing the research on pervasive and ubiquitous computing , 2011, Scientometrics.

[33]  Chan-Yuan Wong,et al.  Growth behavior of publications and patents: A comparative study on selected Asian economies , 2010, J. Informetrics.

[34]  Francis Narin,et al.  Patent bibliometrics , 2005, Scientometrics.

[35]  Yong-Gil Lee,et al.  What affects a patent’s value? An analysis of variables that affect technological, direct economic, and indirect economic value: An exploratory conceptual approach , 2009, Scientometrics.

[36]  Anthony J. Trippe,et al.  Patinformatics: Tasks to tools , 2003 .

[37]  Chaomei Chen,et al.  CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature , 2006, J. Assoc. Inf. Sci. Technol..

[38]  Thed N. van Leeuwen,et al.  Technological Relevance of Science: An Assessment of Citation Linkages between Patents and Research Papers , 2000, Scientometrics.

[39]  Seema Sharma,et al.  Using patents and publications to assess R&D efficiency in the states of the USA , 2011 .

[40]  Francis Narin,et al.  Linkage between patents and papers: An interim EPO/US comparison , 2006, Scientometrics.

[41]  Muaz A. Niazi,et al.  Agent-based computing from multi-agent systems to agent-based models: a visual survey , 2011, Scientometrics.

[42]  Mikhail E. Portnoi,et al.  Generation of femtosecond electromagnetic pulses at the nanoscale , 2006, SPIE Optics + Photonics.

[43]  Thomas Klose,et al.  Text mining and visualization tools - Impressions of emerging capabilities , 2008 .

[44]  Xu Xie,et al.  Coherent control of THz wave generation in ambient air. , 2006, Physical review letters.

[45]  N. Vieweg,et al.  Terahertz imaging: applications and perspectives. , 2010, Applied optics.

[46]  D. Zimdars,et al.  Terahertz Imaging , 2007, 2007 Conference on Lasers and Electro-Optics (CLEO).

[47]  Qing Liu,et al.  Bibliometric trend analysis on global graphene research , 2011, Scientometrics.

[48]  A. Lee,et al.  Real-time terahertz imaging over a standoff distance (>25meters) , 2006 .

[49]  D. Grischkowsky,et al.  Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors , 1990 .

[50]  Rongying Zhao,et al.  Visual Analysis of International Oil Flax Research , 2011 .

[51]  J. Faist,et al.  Quantum Cascade Laser , 1994, Science.

[52]  吕鹏辉,et al.  Bibliometric trend analysis on global graphene research , 2011 .

[53]  X C Zhang,et al.  Terahertz wave imaging: horizons and hurdles. , 2002, Physics in medicine and biology.

[54]  Ray J. Paul,et al.  Fitting the jigsaw of citation: Information visualization in domain analysis , 2001, J. Assoc. Inf. Sci. Technol..

[55]  Zhang Xi,et al.  Materials for terahertz science and technology , 2003 .

[56]  B. Williams,et al.  3.4 THz quantum cascade laser operating above liquid nitrogen temperature , 2003 .

[57]  Martin G. Moehrle,et al.  Patinformatics as a business process: A guideline through patent research tasks and tools , 2010 .

[58]  Chaomei Chen,et al.  Web site design with the patron in mind: A step-by-step guide for libraries , 2006 .

[59]  E. Linfield,et al.  Terahertz semiconductor-heterostructure laser , 2002, Nature.

[60]  Xiang Zhang,et al.  Generation of femtosecond electromagnetic pulses from semiconductor surfaces , 1990 .