Reducing the number of AD passes for computing a sparse Jacobian matrix

A reduction in the computational work is possible if we do not require that the nonzeros of a Jacobian matrix be determined directly. If a column or row partition is available, the proposed substitution technique can be used to reduce the number of groups in the partition further. In this chapter, we present a substitution method to determine the structure of sparse Jacobian matrices efficiently using forward, reverse, or a combination of forward and reverse modes of AD. Specifically, if it is true that the difference between the maximum number of nonzeros in a column or row and the number of groups in the corresponding partition is large, then the proposed method can save many AD passes. This assertion is supported by numerical examples.

[1]  M. Powell,et al.  On the Estimation of Sparse Jacobian Matrices , 1974 .

[2]  M. Powell,et al.  On the Estimation of Sparse Hessian Matrices , 1979 .

[3]  P. Toint,et al.  Optimal estimation of Jacobian and Hessian matrices that arise in finite difference calculations , 1984 .

[4]  Thomas F. Coleman,et al.  Software for estimating sparse Jacobian matrices , 1984, ACM Trans. Math. Softw..

[5]  T. Coleman,et al.  The cyclic coloring problem and estimation of spare hessian matrices , 1986 .

[6]  Iain S. Duff,et al.  Users' guide for the Harwell-Boeing sparse matrix collection (Release 1) , 1992 .

[7]  Trond Steihaug,et al.  Graph coloring and the estimation of sparse Jacobian matrices with segmented columns , 1992 .

[8]  Andreas Griewank,et al.  Computing Large Sparse Jacobian Matrices Using Automatic Differentiation , 1994, SIAM J. Sci. Comput..

[9]  A. Griewank,et al.  Automatic Computation of Sparse Jacobians by Applying the Method of Newsam and Ramsdell , 1995 .

[10]  Martin Berz,et al.  Computational differentiation : techniques, applications, and tools , 1996 .

[11]  T. Coleman,et al.  Structure and Efficient Jacobian Calculation , 1996 .

[12]  Thomas F. Coleman,et al.  The Efficient Computation of Sparse Jacobian Matrices Using Automatic Differentiation , 1998, SIAM J. Sci. Comput..

[13]  S. Hossain On the computation of sparse Jacobian matrices and Newton steps , 1998 .

[14]  T. Steihaug,et al.  Computing a sparse Jacobian matrix by rows and columns , 1998 .