Contact and dipolar contributions to lanthanide-induced NMR shifts of amino acid and peptide models for calcium binding sites in proteins

[1]  T. Miyazawa [Nuclear magnetic resonance in biochemistry]. , 1985, Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan.

[2]  B. Sykes,et al.  Use of lanthanide-induced nuclear magnetic resonance shifts for determination of protein structure in solution: EF calcium binding site of carp parvalbumin. , 1983, Biochemistry.

[3]  I. A. Rose,et al.  An enzyme with ubiquitin carboxy-terminal esterase activity from reticulocytes. , 1983, Biochemistry.

[4]  B. Sykes,et al.  Proton nuclear magnetic resonance studies of porcine intestinal calcium binding protein. , 1983, Biochemistry.

[5]  T. A. Babushkina,et al.  Interpretation of lanthanide-induced shifts in NMR spectra. The case of nonaxial symmetry , 1983 .

[6]  B. Sykes,et al.  Spectral studies on the calcium binding properties of bovine brain S-100b protein. , 1983, Biochemistry.

[7]  A. Bothner‐By,et al.  Two new bifunctional protein modification reagents and their application to the study of parvalbumin. , 1983, Biochemistry.

[8]  J. Takats,et al.  Solution structure of tris[hydridotris(pyrazol-1-yl)borato]ytterbium(III); rare example of solution rigid lanthanide complex , 1983 .

[9]  E Carafoli,et al.  Influence of Ca2+ and trifluoperazine on the structure of calmodulin. A 1H-nuclear magnetic resonance study. , 2005, European journal of biochemistry.

[10]  S. Forsén,et al.  Direct observation of the calcium-43 NMR signals from calcium(2+) bound to proteins , 1982 .

[11]  D. J. Raber,et al.  Structure elucidation with lanthanide-induced shifts. 11. Analysis of alkyl-substituted benzonitriles , 1982 .

[12]  Robert J.P. Williams The chemistry of lanthanide ions in solution and in biological systems , 1982 .

[13]  B. Sykes,et al.  Laser photochemically induced dynamic nuclear polarization proton nuclear magnetic resonance studies on three homologous calcium binding proteins: cardiac troponin-C, skeletal troponin-C, and calmodulin. , 1981, Biochemistry.

[14]  B. Sykes,et al.  Hydrogen-1 nuclear magnetic resonance investigation on bovine cardiac troponin C. Comparison of tyrosyl assignments and calcium-induced structural changes to those of two homologous proteins, rabbit skeletal troponin C and bovine brain calmodulin. , 1981, Biochemistry.

[15]  R. Hodges,et al.  Calcium-induced protein folding. Structure-affinity relationships in synthetic analogs of the helix-loop-helix calcium binding unit. , 1981, The Journal of biological chemistry.

[16]  B. Sykes,et al.  Proton nuclear magnetic resonance determination of the sequential ytterbium replacement of calcium in carp parvalbumin. , 1981, Biochemistry.

[17]  J. Reuben,et al.  Aqueous lanthanide shift reagents. 10. Proton and carbon-13 studies of the interaction of the aquoions with amino acids , 1981 .

[18]  C. Dobson,et al.  Nuclear magnetic shift and relaxation effects resulting from complexation of lanthanide ions with endo-cis-bicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic acid , 1981 .

[19]  B. Sykes,et al.  The temperature dependence of lanthanide-induced 1H NMR shifts observed for the interaction of Yb3+ with the calcium-binding protein parvalbumin , 1980 .

[20]  B. Sykes,et al.  Strategies for the uses of lanthanide NMR shift probes in the determination of protein structure in solutio. Application to the EF calcium binding site of carp parvalbumin. , 1980, Biophysical journal.

[21]  A. Sherry,et al.  Separation of contact and pseudocontact contributions to 13C lanthanide induced shifts in non-axially-symmetric lanthanide ethylenediaminetetraacetate chelates , 1980 .

[22]  B. Sykes,et al.  Nuclear magnetic resonance determination of metal-protn distances in the EF site of carp parvalbumin using the susceptibility contribution to the line broadening of lanthanide-shifted resonances. , 1980, Biochemistry.

[23]  J. Reuben,et al.  Aqueous lanthanide shift reagents. 9. Evaluation of a model for the separation of contact and dipolar shift contributions: Effects of magnetic asymmetry , 1980 .

[24]  D. S. Brenner,et al.  Carbon‐13 magnetic resonance study of lanthanide‐substituted muscle calcium binding parvalbumins , 1979 .

[25]  H. Brittain Intermolecular energy transfer between lanthanide complexes in aqueous solution. 4. Stereoselectivity in the transfer from terbium(III) to europium(III) complexes of aspartic acid , 1979 .

[26]  J. Harrison,et al.  The amino acid sequence of porcine intestinal calcium-binding protein. , 1979, Canadian journal of biochemistry.

[27]  R. Martin,et al.  Lanthanides as probes for calcium in biological systems , 1979, Quarterly Reviews of Biophysics.

[28]  H. Kozłowski,et al.  Interactions of LaIII, NdIII and LuIII ions with aspartic acid and asparagine in aqueous solutions , 1979 .

[29]  T. Drakenberg,et al.  Non‐equivalence of the CD and EF sites of muscular parvalbumins. A 113Cd NMR study , 1978, FEBS letters.

[30]  J. Reuben,et al.  AQUEOUS LANTHANIDE SHIFT REAGENTS. 6. LANTHANIDE EFFECTS ON THE PROTON AND CARBON-13 RELAXATION RATES OF SARCOSINE. EVIDENCE FOR ISOSTRUCTURAL AMINO ACID COMPLEXES ALONG THE LANTHANIDE SERIES , 1978 .

[31]  R. Lenkinski,et al.  An analysis of the Co2+-induced nuclear magnetic resonance perturbations of hen egg white lysozyme. , 1978, Biochemistry.

[32]  H. Kozłowski,et al.  Proton NMR studies of the coordination sites and of the ligand conformation in the aqueous solutions containing L-aspartic acid and lanthanum(III) or lutetium(III) ions , 1978 .

[33]  J. Thornton,et al.  Calcium binding by troponin-C. A proton magnetic resonance study. , 1977, Journal of molecular biology.

[34]  P. Laszlo,et al.  Sodium complexation by the calcium binding site of parvalbumin , 1977, FEBS letters.

[35]  D. Hartshorne,et al.  Ca2+ and Mg2+ dependent conformations of troponin C as determined by 1H and 19F nuclear magnetic resonance. , 1977, Biochemistry.

[36]  A. Sherry,et al.  Proton and carbon lanthanide-induced shifts in aqueous alanine. Evidence for structural changes along the lanthanide series , 1977 .

[37]  R. Lenkinski,et al.  Lanthanide induced NMR perturbations of HEW lysozyme: evidence for nonaxial symmetry. , 1977, Biochemical and biophysical research communications.

[38]  H. Brittain,et al.  Circularly polarized emission studies on Tb3+ and Eu3+ complexes with potentially terdentate amino acids in aqueous solution. , 1977, Bioinorganic chemistry.

[39]  C. N. Reilley,et al.  Separation of contact and dipolar lanthanide induced nuclear magnetic resonance shifts: evaluation and application of some structure independent methods , 1976 .

[40]  J. Reuben,et al.  Aqueous lanthanide shift reagents. 1. Interaction of the ethylenediaminetetraacetate chelates with carboxylates. The pH dependence, ionic medium effects, and chelate structure , 1976 .

[41]  R. Kretsinger,et al.  Refinement of the structure of carp muscle calcium-binding parvalbumin by model building and difference Fourier analysis. , 1976, Journal of molecular biology.

[42]  B. Sykes,et al.  Lanthanide interactions with nitrotyrosine. A specific binding site for nuclear magnetic resonance shift probes in proteins. , 1975, Journal of the American Chemical Society.

[43]  F. Inagaki,et al.  Lanthanide-Induced Nuclear Magnetic Resonance Shifts and Molecular Structure of L-Azetidine-2-Carboxylic Acid. I. Evaluation of the Shifts Intrinsic to the Lanthanide-Substrate 1:1 Complex , 1975 .

[44]  E. Nieboer The lanthanide ions as structural probes in biological and model systems , 1975 .

[45]  A. Mclachlan,et al.  Structural homology of myosin alkali light chains, troponin C and carp calcium binding protein , 1974, Nature.

[46]  R. Martin,et al.  Lanthanide complexes of amino acids , 1974 .

[47]  J. Reuben On the origin of chemical shifts in lanthanide complexes and some implications thereof , 1973 .

[48]  E. R. Birnbaum,et al.  Nuclear magnetic resonance study of the interaction of neodymium(III) with amino acids and carboxylic acids. An aqueous shift reagent , 1973 .

[49]  B. C. Mayo Lanthanide shift reagents in nuclear magnetic resonance spectroscopy , 1973 .

[50]  C. Dobson,et al.  Separation of contact and pseudo-contact contributions to shifts induced by lanthanide(III) ions in nuclear magnetic resonance spectra , 1973 .

[51]  W. Horrocks,et al.  Lanthanide Complexes as Nuclear Magnetic Resonance Structural Probes: Paramagnetic Anisotropy of Shift Reagent Adducts , 1972, Science.

[52]  B. Bleaney Nuclear magnetic resonance shifts in solution due to lanthanide ions , 1972 .

[53]  H. Rasmussen,et al.  The Role of Cyclic AMP and Calcium in Cell Activatio , 1972 .

[54]  R. M. Golding,et al.  A theoretical study of the 14N and 17O N.M.R. shifts in lanthanide complexes , 1972 .

[55]  C. Dobson,et al.  Origin of lanthanide nuclear magnetic resonance shifts and their uses , 1972 .

[56]  E. R. Birnbaum,et al.  Rare earth metal ions as substitutes for the calcium ion in Bacillus subtilis -amylase. , 1971, Biochemistry.

[57]  C. D. Barry,et al.  Quantitative Determination of Mononucleotide Conformations in Solution using Lanthanide Ion Shift and Broadening NMR Probes , 1971, Nature.

[58]  E. R. Birnbaum,et al.  Rare earth metal ions as probes of calcium ion binding sites in proteins. Neodymium(3) acceleration of the activation of trypsinogen. , 1970, The Journal of biological chemistry.

[59]  R. Kurland,et al.  Isotropic NMR shifts in transition metal complexes: The calculation of the fermi contact and pseudocontact terms , 1970 .

[60]  J. Powell,et al.  Acetate Complexes of the Rare Earth and Several Transition Metal Ions , 1962 .

[61]  A. S. Tompa,et al.  Coördination Compounds. II. Trends in the Stability of Some Rare Earth Chelates , 1962 .

[62]  R. E. Robertson,et al.  ISOTROPIC NUCLEAR RESONANCE SHIFTS , 1958 .