Observation of thermal fluctuations in a superfluid optomechanical system
暂无分享,去创建一个
L. Childress | A. D. Kashkanova | A. B. Shkarin | C. D. Brown | N. E. Flowers-Jacobs | S. W. Hoch | L. Hohmann | K. Ott | S. Garcia | J. Reichel | J. G. E. Harris | N. Flowers-Jacobs | L. Childress | J. Reichel | J. G. Harris | A. Shkarin | S. Hoch | A. Kashkanova | C. Brown | K. Ott | S. Garcia | L. Hohmann
[1] G. Agarwal,et al. Theory of optomechanical interactions in superfluid He , 2014, 1406.2248.
[2] N. Flowers-Jacobs,et al. Fiber-cavity-based optomechanical device , 2012, 1206.3558.
[3] N. Flowers-Jacobs,et al. Optomechanics in superfluid helium coupled to a fiber-based cavity , 2016, 1609.07025.
[4] M. Aspelmeyer,et al. Squeezed light from a silicon micromechanical resonator , 2013, Nature.
[5] Erik Lucero,et al. Quantum ground state and single-phonon control of a mechanical resonator , 2010, Nature.
[6] Markus Aspelmeyer,et al. Quantum optomechanics , 2012, 2014 Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications.
[7] S. Girvin,et al. Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane , 2008, Nature.
[8] H. Tang,et al. Nonlinear optical effects of ultrahigh-Q silicon photonic nanocavities immersed in superfluid helium , 2013, Scientific reports.
[9] Joshua A. Slater,et al. Non-classical correlations between single photons and phonons from a mechanical oscillator , 2015, Nature.
[10] O. Arcizet,et al. High-sensitivity monitoring of micromechanical vibration using optical whispering gallery mode resonators , 2008, 0805.1608.
[11] N. Flowers-Jacobs,et al. Optically mediated hybridization between two mechanical modes. , 2013, Physical review letters.
[12] D. Hunger,et al. Laser micro-fabrication of concave, low-roughness features in silica , 2011, 1109.5047.
[13] W. P. Bowen,et al. Laser cooling and control of excitations in superfluid helium , 2015, Nature Physics.
[14] C. Regal,et al. Strong Optomechanical Squeezing of Light , 2013, 1306.1268.
[15] Tilo Steinmetz,et al. A fiber Fabry–Perot cavity with high finesse , 2010, 1005.0067.
[16] K. Schwab,et al. Ultra-High Q Acoustic Resonance in Superfluid $$^4$$4He , 2016, 1607.07902.
[17] John P. Davis,et al. Ultralow-Dissipation Superfluid Micromechanical Resonator , 2016, 1608.01380.
[18] K. C. Schwab,et al. Superfluid optomechanics: coupling of a superfluid to a superconducting condensate , 2013, 1308.2164.
[19] S. Deleglise,et al. Optomechanically Induced Transparency , 2011 .
[20] C. Regal,et al. Observation of Radiation Pressure Shot Noise on a Macroscopic Object , 2012, Science.
[21] T. Palomaki,et al. Entangling Mechanical Motion with Microwave Fields , 2013, Science.
[22] S. Girvin,et al. Observability of radiation-pressure shot noise in optomechanical systems , 2010, 1004.3587.
[23] Superfluid Brillouin optomechanics , 2016, 1602.05640.
[24] Matthew D. Shaw,et al. Phonon counting and intensity interferometry of a nanomechanical resonator , 2014, Nature.
[25] M. Aspelmeyer,et al. Laser cooling of a nanomechanical oscillator into its quantum ground state , 2011, Nature.
[26] R. Donnelly,et al. The calculated thermodynamic properties of superfluid helium‐4 , 1977 .
[27] Multimode optomechanical dynamics in a cavity with avoided crossings. , 2014, Nature communications.