O2+ as reagent ion in the PTR-MS instrument

[1]  F. Fehsenfeld,et al.  Thermal energy positive ion reactions in a wet atmosphere containing ammonia , 1973 .

[2]  S. Davies,et al.  Quantification of ammonia in human breath by the selected ion flow tube analytical method using H30+ and 02+ precursor ions. , 1998, Rapid communications in mass spectrometry : RCM.

[3]  A. Wisthaler,et al.  Proton-transfer-reaction mass spectrometry (PTR-MS): on-line monitoring of volatile organic compounds at volume mixing ratios of a few pptv , 1999 .

[4]  J. Nowak,et al.  Chemical ionization mass spectrometry technique for detection of dimethylsulfoxide and ammonia , 2002 .

[5]  G. J. Frost,et al.  A chemical ionization mass spectrometry technique for airborne measurements of ammonia , 2007 .

[6]  Robert J. Yokelson,et al.  Evaluation of adsorption effects on measurements of ammonia, acetic acid, and methanol , 2003 .

[7]  P. Selvin,et al.  Mass spectrometric analysis of a N2/H2 microwave discharge plasma , 2002 .

[8]  Carsten Warneke,et al.  Validation of atmospheric VOC measurements by proton-transfer-reaction mass spectrometry using a gas-chromatographic preseparation method. , 2003, Environmental science & technology.

[9]  P. Quinn,et al.  Collection efficiencies of a tandem sampling system for atmospheric aerosol particles and gaseous ammonia and sulfur dioxide , 1989 .

[10]  L. J. van der Eerden,et al.  Effects of atmospheric ammonia on vegetation--a review. , 1994, Environmental pollution.

[11]  Werner Lindinger,et al.  Proton transfer reaction mass spectrometry: on-line trace gas analysis at the ppb level , 1995 .

[12]  G. Wannier Motion of gaseous ions in strong electric fields , 1953 .

[13]  Timothy A. Su,et al.  Parametrization of the ion–polar molecule collision rate constant by trajectory calculations , 1982 .

[14]  Yufeng Ji,et al.  Concurrent use of H3O+, NO+, and O2+ precursor ions for the detection and quantification of diverse trace gases in the presence of air and breath by selected ion-flow tube mass spectrometry , 2001 .

[15]  P. Španěl,et al.  The novel selected-ion flow tube approach to trace gas analysis of air and breath. , 1996, Rapid communications in mass spectrometry : RCM.

[16]  T. Holland,et al.  Selected ion flow tube mass spectrometry of urine headspace. , 1999, Rapid communications in mass spectrometry : RCM.

[17]  Cinzia Perrino,et al.  Gaseous ammonia in the urban area of Rome, Italy and its relationship with traffic emissions , 2002 .

[18]  P. Hug,et al.  Three-way catalyst-induced formation of ammonia : velocity- and acceleration-dependent emission factors , 2006 .

[19]  A. Wisthaler,et al.  Acetone and acetonitrile in the tropical Indian Ocean boundary layer and free troposphere: Aircraft‐based intercomparison of AP‐CIMS and PTR‐MS measurements , 2001 .

[20]  A. Raksit Reactions of O2+, O4+ and O2+•H2O ions with neutral molecules , 1986 .

[21]  J. Seinfeld,et al.  Atmospheric Chemistry and Physics: From Air Pollution to Climate Change , 1998 .

[22]  M. A. Sutton,et al.  Marine and land-based influences on atmospheric ammonia and ammonium over Tenerife , 2000 .

[23]  P. Španěl,et al.  Selected ion flow tube studies of the reactions of H3O+, NO+, and O2+ with several amines and some other nitrogen-containing molecules , 1998 .

[24]  D. Fowler,et al.  A New Diffusion Denuder System for Long-Term, Regional Monitoring of Atmospheric Ammonia and Ammonium , 2001 .

[25]  P. Monks,et al.  Chemical ionization reaction time-of-flight mass spectrometry , 2006 .

[26]  Jan Willem Erisman,et al.  Instrument development and application in studies and monitoring of ambient ammonia , 2001 .

[27]  E. P. Hunter,et al.  Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update , 1998 .

[28]  A. Wisthaler,et al.  A method for real‐time detection of PAN, PPN and MPAN in ambient air , 2000 .

[29]  Werner Lindinger,et al.  Proton-transfer-reaction mass spectrometry (PTR–MS): on-line monitoring of volatile organic compounds at pptv levels , 1998 .

[30]  John B. Nowak,et al.  Analysis of urban gas phase ammonia measurements from the 2002 Atlanta Aerosol Nucleation and Real‐Time Characterization Experiment (ANARChE) , 2006 .

[31]  R. C. Weast CRC Handbook of Chemistry and Physics , 1973 .

[32]  D. B. Milligan,et al.  Real-time, high-resolution quantitative measurement of multiple soil gas emissions: selected ion flow tube mass spectrometry. , 2002, Journal of environmental quality.

[33]  J. Paulson,et al.  An experimental survey of the reactions of NHn+ ions (n = 0 to 4) with several diatomic and polyatomic molecules at 300 K , 1980 .

[34]  M. Bowers,et al.  Energy disposal in charge transfer reactions producing NH+.3: Dependence of the NH+.3+H2O reaction on NH+.3 internal energy , 1983 .

[35]  T. Miller,et al.  A laboratory study of the reactions of N+, N2+, N3+, N4+, O+, O2+, and NO+ ions with several molecules at 300 K , 1978 .

[36]  A. Bouwman,et al.  A global high‐resolution emission inventory for ammonia , 1997 .

[37]  M. Kulmala,et al.  Aerosol formation during PARFORCE: Ternary nucleation of H2SO4, NH3, and H2O : New Particle Formation and Fate in the Coastal Environment (PARFORCE) , 2002 .

[38]  C. Spirig,et al.  Performance characteristics of a proton-transfer-reaction mass spectrometer (PTR-MS) derived from laboratory and field measurements , 2004 .

[39]  J. Fuhrer,et al.  Bi‐directional soil/atmosphere N2O exchange over two mown grassland systems with contrasting management practices , 2005, Global change biology.